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Abstract. By combining two objects with no quantum effect one can get an object with quantum effect.
Such a phenomenon, often referred to as activation, has been analyzed for the notion of steering nonlocality.
Activation of steering nonlocality is observed for different classes of mixed entangled states in linear network
scenarios. Characterization of arbitrary two qubit states, in ambit of steering activation in network scenarios
has been provided in this context. Using the notion of reduced steering, instances of steerability activation
are also observed in nonlinear network. Present analysis involves three measurement settings scenario (for
both trusted and untrusted parties) where steering nonlocality is distinguishable from Bell nonlocality.

1 Introduction

Quantum nonlocality is an inherent feature of quan-
tum theory [1,2]. It forms the basis of various informa-
tion theoretic tasks [3–10]. Presence of entanglement
is a necessary condition for generation of nonlocal cor-
relations, though it is not sufficient due to existence
of local models of some mixed entangled states [11–
13]. Such type of entangled states are often referred
to as local entangled states [14]. Procedures involving
exploitation of nonlocal correlations from local entan-
gled states are often referred to as activation scenarios.
[15]. Till date, such activation scenarios are classified
into three categories: activation via local filtering [16–
18], activation by tensoring [19–23] and activation in
quantum networks.. Any possible combination of mech-
anisms involved in these three types is also considered
as a valid activation procedure.

In activation by quantum network scenarios, nonlo-
cality is activated by suitable arrangement of states
(different or identical copies) in a quantum network [24–
28]. Speaking of the role of quantum networks in acti-
vation, entanglement swapping networks have emerged
as a useful tool for activating nonlocality of states in
standard Bell scenario. In present discussion, utility of
these networks will be explored in ambit of activating
nonlocality beyond Bell scenario.
In an entanglement swapping network, entanglement is
created between two distant parties sharing no direct
common past [29–31]. Apart from its fundamental
importance, it is applicable in various quantum appli-
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cations. This procedure is also a specific example of
quantum teleportation [32].
The key point of quantum nonlocality activation (Bell-
CHSH sense) in entanglement swapping scenario is that
starting from entangled states (shared between inter-
acting parties) satisfying Bell-CHSH inequality, a Bell-
nonlocal state is generated between non-interacting
parties at the end of the protocol. In [24,27,28] swap-
ping procedure has been framed as a novel example
of nonlocality activation in quantum mechanics. Exist-
ing research works have exploited bipartite [24,27,28]
and tripartite hidden nonlocality [33] in standard Bell
scenario using swapping network. Present work will be
exploring the utility(if any) of entanglement swapping
network for activation of quantum steering nonlocality.
Owing to involvement of sequential measurements in
the network scenario, we will refer activation of steer-
ing nonlocality as revealing hidden steering nonlocality
in spirit of Popescu [16].
Motivated by famous EPR argument [1] claiming
incompleteness of quantum theory, Schrodinger first
gave the concept of steering [34,35]. A complete math-
ematical formalism of such a manifestation of steering
was provided in [36] where they characterized steering
correlations. Several criteria have emerged for detecting
steerability of correlations generated from a given quan-
tum state [37–47]. The correlation-based criterion given
in [39], often referred to as CJWR inequality, is used
here for analyzing activation of steerability. Up to two
measurement settings scenario, notions of Bell-CHSH
nonlocality and any steering nonlocality are indistin-
guishable. So, here we consider CJWR inequality for
three measurement settings. Violation of this symmet-
ric inequality guarantees steerability of the bipartite
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correlations generated in the corresponding measure-
ment scenario. Such form of steerability is often referred
to as F3 steerability. Using such a symmetric inequality
as a detection criterion allows interchange of the roles of
the trusted and the untrusted parties in the operational
interpretation of steering.
Now consider a scenario involving two entangled states
(ρAB , ρBC ,say) such that none of them violates CJWR
inequality for three settings [39]. Let ρAB and ρBC

be shared between three distant parties Alice, Bob
and Charlie(say) where Alice and Charlie share no
direct common past. Let ρAB be shared between Alice
and Bob(say), whereas ρBC be shared between Bob
and Charlie. Let classical communication be allowed
between two parties sharing a state. Hence, Alice and
Charlie do not interact. In such a scenario, when the
parties perform local operations, will it be possible
to generate a steerable state between the two non-
interacting parties? Affirmative result is obtained when
one considers an entanglement swapping network. To
be precise, for some outputs of Bob, conditional state
shared between the two non-interacting parties (Alice
and Charlie) turns out to be F3 steerable.
After observing hidden steerability for some families
of two qubit states in a standard entanglement swap-
ping network (Fig. 1), a characterization of arbitrary
two qubits states is given in this context. As already
mentioned before, CJWR inequality (for three settings)
given in [39] is used as a detection criterion. Instance
of genuine activation of steering is also observed in
the sense that steerable state is obtained while using
unsteerable states in the swapping protocol. Arbitrary
two qubit states have also been characterized in per-
spective of genuine activation. At this junction it should
be pointed out that the steerable conditional states
resulting at the end of the protocol are Bell-local in
corresponding measurement scenario [48].
Exploring hidden steerability in three party entan-
glement swapping scheme, number of parties is then
increased. Results of activation are observed in a
star network configuration of entanglement swapping
involving nonlinear arrangement of four parties under
some suitable measurement contexts.
Rest of our work is organized as follows. In Sect. 2,
we provide the motivation underlying present discus-
sion. In Sect. 3, we provide with some mathematical
preliminaries. Activation of steerability in three party
network scenario is analyzed in Sect. 4. In next section,
revelation of hidden steerability is then discussed when
number of parties is increased in a nonlinear fashion (in
Sect. 5). Phenomenon of genuine activation of steering
nonlocality is discussed in Sect. 6 followed by conclud-
ing remarks in Sect. 7.

2 Motivation

Steerable correlations are used in various quantum
information processing tasks such as cryptography [49–
54], randomness certification [55–59], channel discrimi-

nation [60,61] and many others. So any steerable quan-
tum state is considered a useful resource. Though pure
entangled states are best candidate in this context, but
these are hardly available. Consequently, mixed entan-
gled states are used in practical situations all of which
are not steerable. From practical perspectives, exploit-
ing steerability from unsteerable entangled states thus
warrants attention. In this context revelation of hid-
den steerability from unsteerable quantum states basi-
cally motivates present discussion. Choosing network
scenario based on entanglement swapping for the acti-
vation purpose is further motivated by the fact that
steerable correlations can be generated between two
non-interacting parties once the states involved are sub-
jected to suitable LOCC [62]. Such nonclassical corre-
lations in turn may be used as a resource in network-
based quantum information and communication proto-
cols [63–65].

3 Preliminaries

3.1 Bloch vector representation

Let � denotes a two qubit state shared between two
parties.

� =
1
4
(I2×2 + �u.�σ ⊗ I2 + I2 ⊗ �v.�σ

+
3∑

j1,j2=1

wj1j2σj1 ⊗ σj2), (1)

with �σ = (σ1, σ2, σ3), σjk
denoting Pauli operators

along three mutually perpendicular directions(jk =
1, 2, 3). �u = (l1, l2, l3) and �v = (r1, r2, r3) stand for
the local Bloch vectors(�u,�v ∈ R

3) of party A and B,
respectively, with |�u|, |�v| ≤ 1 and (wi,j)3×3 denotes the
correlation tensor W(a real matrix). The components
wj1j2 are given by wj1j2 = Tr[ρ σj1 ⊗ σj2 ].

On applying suitable local unitary operations, the
correlation tensor becomes diagonalized:

�
′
=

1
4
(I2×2 +�a.�σ ⊗ I2 + I2 ⊗ �b.�σ +

3∑

j=1

tjjσj ⊗ σj),

(2)
Here, the correlation tensor is T = diag(t11, t22, t33).
Under local unitary operations entanglement content of
a quantum state remains invariant. Hence, steerability
of � and �

′
remain the same.

3.2 Steering inequality

A linear steering inequality was derived in [39]. Under
the assumption that both the parties sharing a bipar-
tite state(ρAB) perform n dichotomic quantum mea-
surements (on their respective particles), Cavalcanti,
Jones, Wiseman, and Reid(CJWR) formulated a series
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of correlators-based inequalities [39] for checking steer-
ability of ρAB :

Fn(ρAB , ν) =
1√
n

|
n∑

l=1

〈Al ⊗ Bl〉| ≤ 1 (3)

Notations used in the above inequality are detailed
below:

• 〈Al ⊗ Bl〉 = Tr(ρAB(Al ⊗ Bl))
• ρAB ∈ HA ⊗HB is any bipartite quantum state [47].
• Al = âl · −→σ , Bl = b̂l · −→σ , âl, b̂l ∈ R

3 denote real
orthonormal vectors. AlBl thus denote inputs of
Alice and Bob.

• ν = {â1, â2, . . . .ân, b̂1, b̂2, . . . , b̂n} stands for the col-
lection of measurement directions.

In case, dimension of each of local Hilbert spaces HA, HB

is 2, ρAB is given by Eq. (1). Violation of Eq. (3) guar-
antees both way steerability of ρAB in the sense that it
is steerable from A to B and vice versa.

Steering phenomenon remaining invariant under local
unitary transformations, the analytical expressions of
the steering inequality remain unaltered if the simpli-
fied form [Eq. (2)] of two qubit state ρAB is considered.
The analytical expression of the upper bound of corre-
sponding inequality for 3 settings is given by [47]:

MaxνF3(ρAB , ν) =
√

t211 + t222 + t233,

=
√

Tr(T tT )

=
√

Tr(W tW ) (4)

where W and T denote the correlation tensor corre-
sponding to density matrix representation of ρAB given
by Eqs. (1) and (2), respectively. Last equality in Eq. (4)
holds as trace of a matrix is unitary equivalent. Hence,
by the linear inequality (Eq. 3) (for n = 3), any two
qubit state ρAB(shared between A and B) is both-way
F3 steerable if:

SAB = Tr[TT
ABTAB ] > 1. (5)

Equation (5) gives only a sufficient condition detecting
steerability. So if any state violates Eq. (5), the state
may be steerable, but its steerability remains unde-
tected by CJWR inequality [Eq. (3) for n = 3]. Any
state violating Eq. (5) may be referred to as F3 unsteer-
able state in the sense that the state is unsteerable up
to CJWR inequality for three settings.

3.3 Bell nonlocality in three settings measurement
scenario

Consider a bipartite measurement scenario involving
three dichotomic measurements settings (on each side).
Such a scenario is often referred to as (3, 3, 2, 2) mea-
surement scenario. CHSH is not the only possible facet

inequality in (3, 3, 2, 2) scenario [66,67]. A complete list
of facet inequalities of Bell polytope (for this measure-
ment scenario) was computed in [67]. There exists only
one Bell inequality inequivalent to CHSH inequality.
That inequivalent facet inequality is referred to as the
I3322 inequality [48]. Denoting local measurements of
Alice and Bob as A1, A2, A3 and B1, B2, B3, respec-
tively, and the outcomes of each of this measurement
as ±1, I3322 inequality takes the form [48]:

−2PB1 − PB2 − PA1 + PA1B1 + PA1B2 + PA1B3

+PA2B1 + PA2B2 − PA2B3 + PA3B1 − PA3B2 ≤ 0,

(6)

where ∀ i, j = 1, 2, 3, PBi
= p(1|Bi), PAi

= p(1|Ai)
denote marginal probabilities and PAiBj

= p(11|AiBj)
stands for the joint probability terms. In terms of these
probability terms, CHSH inequality [3] takes the form:

− (PA1 + PB1 + PA2B2) + PA1B1 + PA1B2 + PA2B1 ≤ 0
(7)

There exist quantum states which violate above inequal-
ity [Eq. (6)] but satisfy CHSH inequality [Eq. (7)] and
vice-versa [48]. Violation of anyone of CHSH [Eq. (7)] or
I3322 inequality [Eq.(6)] guarantees nonlocality of corre-
sponding correlations in (3, 3, 2, 2) scenario. Conversely,
as these two are the only inequivalent facet inequalities
of Bell-local polytope, so any correlation satisfying both
Eqs. (6, 7) is Bell-local in (3, 3, 2, 2) scenario.

3.4 Reduced steering

Notion of reduced steering has emerged in context of
manifesting multipartite steering with the help of bipar-
tite steering [68]. Consider an n-partite quantum state
�1,2,...,n shared between n parties A1, A2, . . . , An If any
one of these parties Ai(say) can steer the particle of
another party say Aj(i 
= j) without aid of any of the
remaining parties Ak(k 
= i, j), then the n-partite origi-
nal state �1,2,...,n is said to exhibit reduced steering. So
reduced steering is one notion of steerability of �1,2,...,n.
Technically speaking �1,2,...,n is steerable if at least one
of the bipartite reduced states �i,j is steerable.

4 Hidden steerability in linear network

As already mentioned before, we focus on steering acti-
vation in quantum network scenario involving qubits
such that steerable correlations are generated between
two distant parties who do not share any direct common
past. We start with an entanglement swapping network
involving three parties.
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Fig. 1 A network of three parties Alice, Bob and Char-
lie. Alice and Bob share an entangled state ρAB and that
the state shared between Bob and Charlie is ρBC . Bob per-
forms Bell basis measurement(BSM) on his two particles
and communicates the results to Alice and Charlie who then
perform projective measurements on their conditional state

4.1 Linear three party network scenario

Consider a network of three parties Alice, Bob and
Charlie arranged in a linear chain (see Fig. 1). Let ρAB

denote the entangled state shared between Alice and
Bob, whereas entangled state ρBC be shared between
Bob and Charlie. So initially Alice and Charlie do not
share any physical state. Let one way classical com-
munication be allowed between parties sharing a state.
To be more specific Bob can communicate to each of
Alice and Charlie. Alice and Charlie are thus the two
non-interacting parties.

First Bob performs joint measurement on his two
qubits in the Bell basis:

|φ±〉 =
|00〉 ± |11〉√

2
, |ψ±〉 =

|01〉 ± |10〉√
2

. (8)

Let �v = (b1b2) denote the outcome of Bob: (0, 0), (0, 1),
(1, 0), (1, 1) correspond to |φ+〉, |φ−〉, |ψ+〉 and |ψ−〉.
Bob then communicates the results to Alice and Char-
lie. Let ρ

(b1b2)
AC be the conditional state shared between

Alice and Charlie when Bob obtains the outcome �b =
(b1b2). Each of Alice and Charlie now performs one
of three arbitrary projective measurements on their
respective qubits. Let xi and zi(i = 1, 2, 3) denote the
measurement settings of Alice and Charlie with aij and
cij(j = 0, 1) denoting the binary outputs corresponding
to xi and zj , respectively. Bipartite correlations arising
from the local measurements of Alice and Charlie are
then used to test CJWR inequality for three settings:

1√
3
|〈A1 ⊗ C1〉 + 〈A2 ⊗ C2〉 + 〈A3 ⊗ C3〉| ≤ 1 (9)

Such a testing of the conditional states is required to
check activation of steerability in the network. Idea of
steerability activation detection is detailed below.

4.2 Steering activation in network

Phenomenon of steering activation is observed if both
the initial states ρAB and ρBC are F3 unsteerable,
whereas at least one of the four conditional states
ρ
(00)
AC , ρ

(01)
AC , ρ

(10)
AC , ρ

(11)
AC is F3 steerable. Precisely speak-

ing, activation occurs if both ρAB and ρBC violate Eq.
(5), whereas ρb1b2

AC satisfies the same for at least one
possible pair (b1, b2). Any pure entangled state being
F3 steerable, no activation is possible if one or both of
the initial states ρAB and ρBC possess pure entangle-
ment. So the periphery of analyzing steerability activa-
tion encompasses only mixed entangled states. We next
provide with an instance of activation observed in the
network.

4.3 An instance of activation

Let us now consider the following families of two qubit
states:

γ1 = (1 − p)|ϕ〉〈ϕ| + p|00〉〈00| (10)
γ2 = (1 − p)|ϕ〉〈ϕ| + p|11〉〈11| (11)

where |ϕ〉 = sin α|01〉 + cos α|10〉, 0 ≤ α ≤ π
4 and

0 ≤ p ≤ 1. These class of states were used for the
purpose of increasing maximally entangled fraction in
an entanglement swapping network [69]. Each of these
families violates Eq. (5) if:

2((1 − p) sin 2α)2 + (2p − 1)2 ≤ 1 (12)

Now let ρAB and ρBC be any member of the family
given by γ1 and γ2 [Eqs. (10,11)], respectively, such that
the state parameters satisfy Eq. (12). When Bob’s par-
ticles get projected along |φ±〉, each of the conditional
states ρ00

AC , ρ01
AC is steerable [satisfying Eq. (5)] if:

1
N1

(9 − 26p + 25p2 + 4(3 − 8p + 5p2) cos(2α)

+ 3(−1 + p)2 cos(4α)) > 1 (13)

where N1 = 2(−1 − p + (−1 + p) cos(2α))2. Similarly if
Bob’s output is |ψ±〉, steerability of each of ρ10

AC , ρ11
AC

is guaranteed if

1
N2

(8(−1 + p)4 sin(2α)4 + N3) > 1, (14)

where N2 = (3 − 2p + 3p2 − 4(−1 + p)p cos(2α)+
(−1 + p)2 cos(4α))2 and N3 = (3−10p+11p2 +4(−1+
p)p cos(2α) + (−1 + p)2 cos(4α))2. There exist state
parameters (p, α) which satisfy Eqs. (12, 13). This in
turn indicates that there exist states from the two
families [Eqs. (10,11)] for which steerability is acti-
vated for Bob obtaining 00 or 01 output (see Fig. 2).
For example, activation is observed for all members
from these two families characterized by α = 0.1, and
p ∈ (0.001, 0.331). However, in case conditional state
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Fig. 2 Shaded region is a subspace in the parameter space
(p, α) of the family of states given by Eqs. (10, 11). It indi-
cates region of steering activation [as detected by Eq. (5)]
obtained in the entanglement swapping protocol (Fig. 1)
when Bob obtains either |φ+〉 or |φ−〉. It should be noted

here that none of the conditional states ρ
(00)
AC , ρ

(01)
AC is Bell

nonlocal in three binary measurement settings scenario [48]

ρ
(10)
AC or ρ

(11)
AC is obtained, activation of steering is not

observed.
To this end one may note that a conditional state

satisfying anyone of Eq. (13) or Eq. (14) is Bell-local
in (3, 3, 2, 2, ) scenario, i.e., it violates neither I3322

inequality [Eq. (6)] nor CHSH inequality [Eq. (7)].

4.4 Measurement settings detecting steerability

As already mentioned before, for the purpose of inves-
tigating activation, criterion [Eq. (5)] used as a suffi-
cient criterion for detecting steerability of conditional
states is a closed form of the upper bound of violation of
CJWR inequality for three settings [Eq. (9)[. It may be
pointed out that the two parties sharing the conditional
state in the network being Alice and Charlie, in Eq.
(9), observables Ci considered unlike that of Bi [used
in Eq. (3)]. Now, as the closed form involves only state
parameters [47], in case any state satisfies the criterion
given by Eq. (5), state is steerable. But no informa-
tion about measurement settings involved in detecting
steerability of the state can be obtained. However, from
practical view point, it is interesting to know suitable
measurement settings which help in steering the states.
For that, given a two qubit state, suitable measure-
ment settings are those projective measurements (for
each of the two parties) for which the state considered
violates Eq. (9). Ai = �ai.�σ and Ci = �ci.�σ(i = 1, 2, 3)
denote projection measurements of Alice and Charlie,
respectively. As mentioned in Sect. 3, for violation of

CJWR inequality [Eq. (9)], each of Alice and Charlie
performs projective measurements in orthogonal direc-
tions: �ai. �aj = 0 = �ci.�cj , ∀ i 
= j. CJWR inequality being
symmetric [39], violation of Eq. (9) implies that the cor-
responding state is steerable from Alice to Charlie and
also from Charlie to Alice. Now, for obvious reasons
choice of appropriate settings is state specific. For pro-
viding some specific examples of suitable measurement
settings, we next consider the instance of activation pro-
vided in Sect. 4.3.

Consider a particular member from each of the
two families [Eqs. (10, 11)] characterized by (p, α) =
(0.214, 0.267). None of these two states is steerable [up
to Eq. (5)]. So none of these two states violate Eq. (9).
Let these two states be used in the linear network. In
case Bob gets output (0, 0) or (0, 1), conditional state
ρ00

AC or ρ01
AC , shared between Alice and Charlie, vio-

lates Eq. (9) when Alice projects her particle in anyone
of the three following orthogonal directions: (0, 0, 1),
(0,−1, 0), (−1, 0, 0) and Charlie’s projective measure-
ment directions are given by: (0, 0, 1), (0, 1, 0), and
(−1, 0, 0). It may be noted here that these are not the
only possible directions for which violation of Eq. (9) is
observed. Alternate measurement directions may also
exist. However, there exists no measurement settings of
Alice and Charlie for which the conditional states ρ10

AC
or ρ11

AC violate Eq. (9). So steering activation is possible
[up to Eq. (9)] in case Bob obtains output 00 or 01 only.

Getting instances of steering activation in the net-
work, an obvious question arises next: can hidden steer-
ability be observed for arbitrary two qubit states? This
however turns out to be impossible in three measure-
ment setting projective measurement scenario(for the
non-interacting parties) when one uses Eq. (5) as steer-
ability detection criterion [47]. We now analyze arbi-
trary two qubit states in this context.

4.5 Characterization of arbitrary two qubit states

Let two arbitrary states be initially considered in the
swapping protocol. In density matrix formalism the
states are represented as:

ρAB =
1
4
(I2×2 + �u1.�σ ⊗ I2 + I2 ⊗ �v1.�σ

+
3∑

j1,j2=1

w1j1j2σj1 ⊗ σj2), (15)

ρBC =
1
4
(I2×2 + �u2.�σ ⊗ I2 + I2 ⊗ �v2.�σ

+
3∑

j1,j2=1

w2j1j2σj1 ⊗ σj2), (16)

Steerability of states remains unhindered under local
unitary operations. Let suitable local unitary opera-
tions be applied to the initial states for diagonalizing
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the correlation tensors:

ρ
′
AB =

1
4
(I2×2 + �a1.�σ ⊗ I2 + I2 ⊗ �b1.�σ

+
3∑

j=1

t1jjσj ⊗ σj), (17)

ρ
′
BC =

1
4
(I2×2 + �a2.�σ ⊗ I2 + I2 ⊗ �b2.�σ

+
3∑

j=1

t2jjσj ⊗ σj), (18)

Let both ρ
′
AB and ρ

′
BC be F3 unsteerable, i.e., let

both of them violate Eq. (5). Hence
∑3

j=1

√
t21jj≤1

,
√

t22jj≤1. We next characterize ρ
′
AB and ρ

′
BC by ana-

lyzing nature of the conditional states ρb1b2
AC . In this

context, we provide three results each of which can be
considered as a condition for no steering activation in
the network. To be precise, if Bloch parameters of any
initial two qubit states satisfy assumptions (see Table 1
for more details) of any of these three results then there
will be no activation of F3 steerability. Of these three
results, two are proved analytically, whereas the last
one is a numerical observation only. First, we give the
two analytic results in form of two theorems.

Theorem 1 If one or both the initial states [Eqs. (17,
18)] do not have any non-null local Bloch vector (see
Table 1) then none of the conditional states ρb1b2

AC satis-
fies Eq. (5).

Proof See Appendix.A Up to the steering criterion
given by Eq. (5), above result implies impossibility of
steering activation in swapping network involving two
qubit states whose local Bloch vectors(corresponding
to both the parties) vanish under suitable local uni-
tary operations. Maximally mixed marginals class of
two qubit states has no local Bloch vector. So, acti-
vation is not possible in network involving any mem-
ber from this class. So hidden steerability cannot be
exploited in absence of local Bloch vectors correspond-
ing to both the parties of a bipartite quantum state.
But can the same be generated if both ρ

′
AB and ρ

′
BC

has one non-null local Bloch vector? Following theorem
provides a negative observation. ��

Theorem 2 If both the initial states ρ
′
AB and ρ

′
BC

have only one non-null local Bloch vector, i.e., �a1 =
�a2 = Θ or �b1 = �b2 = Θ(Θ denote null vector) then
none of the conditional states ρb1b2

AC satisfies Eq. (5).

Proof of Theorem 2 This proof is exactly the same
as that for Theorem 1 owing to the fact that here

also
√

Tr(VT
b1b2

Vb1b2) =
√∑3

k=1(t1kkt2kk)2 where Vb1b2

denote correlation tensor of resulting conditional states
ρ
(b1b2)
AC .

Table 1 Assumptions of three results (analyzed above) are
enlisted here. The correlation tensor of each of the two ini-
tial states ρ

′
AB and ρ

′
BC remain arbitrary. Restrictions are

imposed over the local Bloch parameters only

Result Assumptions Steerability
Activation

Theorem.1 (�ai, �bi) = (Θ, Θ) ∀ i No
or

(�ai, �bi) = (Θ, Θ) for i = 1
or

(�ai, �bi) = (Θ, Θ) for i = 2
Theorem.2 �a1 = �a2 = Θ No

or
�b1 = �b2 = Θ

Numerical �a1 = �b2 = Θ No
Observation or

�b1 = �a2 = Θ

Note that in Theorem 2, �a1 = �a2 = Θ or �b1 = �b2 =
Θ is considered. But what if �a1 = �b2 = Θ or �b1 =
�a2 = Θ? Does activation occurs in such case? Numerical
evidence suggests a negative response to this query:
Numerical Observation: If �a1 = �b2 = Θ or �b1 =
�a2 = Θ then none of the conditional states ρb1b2

AC satisfies
Eq. (5).

Justification of this observation is based on the fact
that numerical maximization of the steerability expres-
sion [Eq. (5)] corresponding to each possible conditional
state ρb1b2

AC gives 1 under the constraints that both the
initial quantum states(ρ

′
AB , ρ

′
BC). Consequently, none

of the conditional states satisfies Eq. (5) if none of
ρ

′
AB , ρ

′
BC satisfies Eq. (5).

Above analysis points out the fact that for revealing
hidden steerability, each of ρ

′
AB and ρ

′
BC should have

non-null local Bloch vectors corresponding to both the
parties. However that condition is also not sufficient
for activation. In case, correlation tensor of any one of
them is a null matrix, the state is a separable state.
When such a state is considered as an initial state in
the network, none of the conditional states is entangled
and thereby activation of steerability becomes impos-
sible. So, when steerability is activated in the network
following are the necessary requirements:

• All of the local Bloch vectors must be non-null: �ai 
=
Θ,�bi 
= Θ∀ i and

• Both the initial states should have non-null correla-
tion tensors.

However, the above conditions are only necessary for
activation purpose but are not sufficient for the same.
We next provide illustration with specific examples in
support of our claim. ��
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4.5.1 Illustration

Let us now analyze the classes of states given by Eqs.
(10, 11) in perspective of above characterization. Both
the families of initial states [Eqs. (10, 11)] have local
Bloch vectors: �a1 = (0, 0, p − cos(2α)(1 − p)), �b1 =
(0, 0, p+cos(2α)(1−p)), �a2 = (0, 0,−p−cos(2α)(1−p)),
�b2 = (0, 0,−p + cos(2α)(1 − p)). Local Bloch vectors
are non-null for cos(2α) 
= ± p

1−p . Correlation ten-
sors of the states from both the families are given by
diag((1−p) sin(2α), (1−p) sin(2α), 2p−1). Clearly acti-
vation is not observed for all family members having
non-null local Blochs as well as non-null correlation ten-
sors. For instance, consider (p, α) = (0.6, 0.6). Bloch
parameters of corresponding states are given by:

• �a1 = (0, 0, 0.455057)), �b1 = (0, 0, 0.744943),
• �a2 = (0, 0,−0.455057)), �b2 = (0, 0,−0.744943),
• diag(ti11, ti22, ti33) = diag(0.372816, 0.372816, 0.2),

∀ i

No steering activation is observed when these two states
are used in the network. This in turn implies that the
criteria given in 4.5 are only necessary but not sufficient
to ensure activation in the network. Now, as already
discussed in Sect. 4.3, there exist members from these
families (see Fig. 2) which when used in the swapping
network steering activation is observed.

Network scenario considered so far involved two
states shared between three parties. However, will
increasing length of the chain, hence increasing number
of initial states be useful for the purpose of revealing
hidden steerability? Though general response to this
query is non-trivial, we consider a star network config-
uration of four parties to give instances of activation of
reduced steering.

5 Nonlinear swapping network involving
n ≥ 3 states

Consider n+1(n ≥ 3) number of parties A1, A2, . . . , An

and B. Let n bipartite states �i(i = 1, 2, . . . , n) be
shared between the parties such that �i is shared
between parties B and Ai(i = 1, 2, . . . , n) (see Fig.3).
B performs a joint measurement on his share of qubits
from each �i and communicates outputs to the other
parties Ai(i = 1, 2, . . . , n). Reduced steering of each of
the conditional n-partite states is checked. To be pre-
cise, it is checked whether at least one possible bipar-
tite reduced state of at least one of the conditional
states satisfies Eq. (5). In case at least one of the
conditional states has reduced steering when none of
�i(i = 1.2 . . . , n) satisfies Eq. (5), activation of steer-
ability is obtained. Activation is thus observed when
one of the n parties sharing n-partite conditional state
can steer the particles of another party without any

Fig. 3 Schematic Diagram of a star network. For i =
1, 2, . . . , n, bipartite state �i is shared between parties B
and Ai. Party B performs joint measurement on state of
his n particles and communicates his output to each of
A1, A2, . . . , An. Reduced steering of corresponding condi-
tional state shared between A1, A2, . . . , An is checked

assistance from remaining n − 2 parties sharing the
same.

Consider a specific instance of n = 3. Let each of
�1, �2, �3 be a member of the family of states given
by Eq.(10) with p = p1, p2, p3 for �1, �2, �3, respec-
tively. Let B perform joint measurement in the follow-
ing orthonormal basis:

|δ1〉 =
1√
3
(|001〉 + |100〉 + |010〉)

|δ2〉 =
1√
3
(|010〉 − |100〉 + |000〉)

|δ3〉 =
1√
3
(−|010〉 + |001〉 + |000〉)

|δ4〉 =
1√
3
(|100〉 + |000〉 − |001〉)

|δ5〉 =
1√
3
(|101〉 + |110〉 + |011〉)

|δ6〉 =
1√
3
(|110〉 − |101〉 + |111〉)

|δ7〉 =
1√
3
(−|110〉 + |111〉 + |011〉)

|δ8〉 =
1√
3
(|111〉 + |101〉 − |011〉) (19)

When B’s particles get projected along δj , let ρ(j)(j =
1, . . . , 8) denote the conditional state shared between
A1, A2, A3. Reduced steering of each of the conditional
states is checked in terms of the steering inequal-
ity given by Eq. (5). Now, let all three initial states
�1, �2, �3 violate Eq. (5). When B’s state gets pro-
jected along any one of δ1, δ6, δ7, δ8 [Eq. (19)], for some
state parameters (p, α), each of corresponding condi-
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Fig. 4 Shaded region in each of four sub figures in the grid
gives the steering activation region obtained stochastically
depending on the different possible outputs of party B’s
measurement in orthonormal basis [Eq. (19)]. Here, the star
network scenario (Fig. 3) involves three non-identical states
from the class given by Eq. (10) for α = 0.2. Starting from
the top row and moving from left to right, shaded regions
indicates reduced steering activation when B’s particles get
projected along δ1, δ6, δ7 and δ8, respectively

tional states has reduced steering. Region of activation
is thus observed (see Fig. 4). Some particular instances
of activation are enlisted in Table 2. At this point it
should be pointed out that none of the reduced states
corresponding to the conditional states violates neither
I3322 inequality [Eq. (6)] nor CHSH inequality [Eq. (7)]
and hence are Bell local (in (3, 3, 2, 2) scenario).

6 Genuine activation of steerability

Most of the research works in the field of activation
scenarios analyze activation of nonclassicality of quan-
tum states with respect to any specific detection crite-
rion of the nonclassical feature considered. To be pre-
cise, let C denote a detection criterion for a specific
notion of quantum nonclassicality. Activation is said to
be observed in any protocol if using one or more quan-
tum states(or identical copies of the same state), none
of which satisfies C, another quantum state is gener-

Table 2 Some specific values of state parameters are
enlisted here for which stochastic steering activation(in
terms of reduced steering) is observed in nonlinear network
(Fig. 3)

State p1 p2 Range of p3

ρ(1) 0.08 0.075 (0.2, 1]

ρ(6) 0.08 0.075 (0.071, 0.467]

ρ(7) 0.08 0.075 (0, 071, 0.465]

ρ(8) 0.08 0.075 (0.2, 1)

To be more precise, for α = 0.2, other parameters p1, p2, p3

are specified for the three non-identical states from the class
given by Eq. (10). First column in the table gives the con-
ditional state corresponding to which activation is observed

ated(at the end of the protocol) that satisfies C. Using
detection criterion of F3 steerability [39,47], so far we
have obtained various cases of steering activation in
both linear and nonlinear quantum networks. But quite
obviously such a trend of activation analysis is criterion
specific and in general can be referred to as activation of
F3 steerability. But here we approach to explore activa-
tion beyond the periphery of criterion specification. We
refer to such activation as genuine activation of steer-
ability.

Let us consider the linear chain of three parties (Fig.
1). For genuine activation we use states which sat-
isfy some criterion of unsteerability and then explore
F3 steerability of the conditional states resulting due
to Bell basis measurement(BSM) by the intermediate
party(Bob) in the protocol. Genuine activation of steer-
ability occurs in case at least one of ρb1b2

AC satisfies Eq.
(5). In [70], the authors proposed an asymmetric suffi-
cient criterion of bipartite unsteerability.

Let ρAB be any two qubit state shared between Alice
and Bob(say). In density matrix formalism ρAB is then
provided by Eq. (1). Consider a positive, invertible lin-
ear map Λ, whose action on ρAB is given by [70]:

I2 ⊗ Λ(ρAB) = I2 ⊗ ρ−1
B ρABI2 ⊗ ρ−1

B , (20)

where I2 is 2 × 2 identity matrix in Hilbert space asso-
ciated with 1st party and ρB = TrA(ρAB). Let ρ

(1)
AB

denote the state density matrix obtained after applying
the above map to ρAB . Local Bloch vector correspond-
ing to 2nd party(Bob) of ρ

(1)
AB becomes a null vector

[70]:

ρ
(1)
AB =

1
4
(I2×2 + �u′ .�σ ⊗ I2 +

3∑

j1,j2=1

w
′
j1j2σj1 ⊗ σj2),

(21)
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On further application of local unitary operations to
diagonalize correlation tensor, ρ

′
AB ultimately becomes:

ρ
(2)
AB =

1
4
(I2×2 + �u′′ .�σ ⊗ I2 +

3∑

j=1

w
′′
jjσj ⊗ σj),

(22)
ρ
(2)
AB [Eq. (22)] is referred to as the canonical form of

ρAB in [70] where the authors argued that ρAB will
be unsteerable if and only if ρ

(2)
AB is unsteerable. They

showed that ρAB is unsteerable from Alice to Bob if
[70]:

Maxx̂((�a.x̂)2 + 2||W ′′
x̂||) ≤ 1 (23)

where x̂ is any unit vector indicating measurement
direction, W ′′

denotes the correlation tensor of ρ
′′
AB and

||.|| denotes Euclidean norm.
For our purpose we consider the unsteerability crite-

rion given by Eq. (23). Below, we characterize arbitrary
two qubit states in ambit of genuine activation of steer-
ability.

6.1 Characterizing two qubit states

Let ρAB and ρBC [Eqs. (15, 16)] denote two arbitrary
two qubit states used in the network. It turns out that
local Bloch vector corresponding to first party of the
initial states play a significant role in determining pos-
sibility of genuine activation of steering in the network.
Next we give two results. While one of those is provided
with an analytical proof, analysis of the other one relies
on numerical optimization. We first state the analytical
result.

Theorem 3 If canonical forms of both the initial states
ρAB and ρBC [Eqs. (15, 16)] satisfy the unsteerability
criterion [Eq. (23)], then genuine activation of steer-
ability is impossible if both of them have null local Bloch
vector corresponding to first party, i.e., �u1, �u2 = Θ.

Proof See appendix. Genuine activation being impos-
sible in case both �u1, �u2 are null vectors, an obvious
question arises whether it is possible in case at least
one of �u1, �u2 
= Θ. We provide next result in this con-
text. As numerical procedure is involved in correspond-
ing calculations(see Appendix C), our next result will
be considered as a numerical observation only.
Numerical Observation: If canonical forms of both
ρAB and ρBC [Eqs. (15, 16)] satisfy the unsteerability
criterion [Eq. (23)], then genuine activation of steer-
ability is impossible if any one of ρAB or ρBC has null
local Bloch vector corresponding to first party, i.e., at
least one of �u1, �u2 = Θ. Justification of this observa-
tion is given in Appendix C Clearly, the above two
results, combined together provide a necessary crite-
rion for genuine activation of steerability:When canon-
ical forms of both the initial states satisfy Eq. (23), if
steering is genuinely activated in the network then both
the initial states must have non-null local Bloch vectors
corresponding to first party, i.e., �u1 
= Θ, �u2 
= Θ. We
next provide with examples in this context. ��

Fig. 5 Shaded regions in the sub figures give region of
genuine activation of steerability for different ranges of
state parameter s2. None of the steerable conditional states
obtained in the protocol is Bell nonlocal in (3, 3, 2, 2) mea-
surement scenario

6.2 Examples

Consider a family of states [70]:

Ω = s|χ〉〈χ| + (1 − s)Ω1 ⊗ I2

2
, (24)

where |χ〉 = cos(β)|00〉 + sin(β)|11〉, 0 ≤ s ≤ 1, I2 is
2x2 identity matrix in Hilbert space associated with
2nd party and Ω1 is the reduced state of first party
obtained by tracing out second party from |χ〉〈χ|, i.e.,
Ω1 = cos2(β)|0〉〈0|+sin2(β)|1〉〈1|. For β 
= π

4 , any mem-
ber from this class has non-null local Bloch vector cor-
responding to first party:(0, 0, cos(2β)). Canonical form
[Eq. (22)] of any member of this class satisfies Eq. (23)
if [70]:

cos2(2β) ≥ 2s − 1
(2 − s)s3

. (25)

Let two non-identical members Ω1 and Ω2 from this
class [Eq. (24)] be used in the entanglement swapping
protocol (Fig. 1). Let (β1, s1) and (β2, s2) be state
parameters of Ω1 and Ω2, respectively. Let both Ω1

and Ω2 be unsteerable. Now, for some values of the
state parameters, the conditional states generated in
the protocol turn out to be steerable (see Fig. 5) as
they satisfy Eq. (5). Range of parameter s2(for some
fixed value of other three parameters (β1, β2, s1)) for
which genuine activation occurs, is provided in Table 3.

Now, as discussed above, the criterion of both the
initial unsteerable states having non-null local Bloch
vector(corresponding to first party) is necessary for
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Table 3 For some specific values of parameters (β1, β2, s1),
of Ω1, Ω2 range of steerability activation other parameter s2

is specified

State β1 β2 s1 Range of s2

ρ00
AC 0.75 0.76 0.99 [0.58, 1]

ρ01
AC 0.65 0.6 0.97 [0.78, 1]

ρ10
AC 0.55 0.55 0.9 [0.88, 1]

ρ11
AC 0.6 0.55 0.8 [0.98, 1]

First column specifies the conditional state corresponding
to which activation is observed

Fig. 6 Genuine activation region obtained for any possible
conditional state when two identical copies of a state from
Ω class are used in the network

genuine activation. The criterion however turns out
to be insufficient for the same. We next provide an
example in support of our claim. Consider two dis-
tinct members Ω3,Ω4 from the family of states given
by Eq. (24) corresponding to the parameters: (β3, s3) =
(0.1, 0.7) and (β4, s4) = (0.3, 0.59). Local Bloch vec-
tors(corresponding to first party) of Ω3 and Ω4 are
(0, 0, 0.980067) and (0, 0, 0.825336), respectively. Both
of Ω3 and Ω4 satisfy the unsteerability criterion given
by Eq. (25). These two states(in their canonical forms)
are now used in the tripartite linear network. Bloch
matrix representations of each of the conditional states
are enlisted in Table 6(see Appendix D). Unsteerabil-
ity criterion [Eq. (23)] is then tested for each of these
conditional states. The optimal value(obtained numeri-
cally) in the maximization problem involved in Eq. (23)
turns out to be less than unity for each of the condi-
tional states (Table 6). Hence, all the conditional states
are unsteerable. Consequently no genuine activation of
steering is observed in the network using Ω3 and Ω4.

It may be noted that genuine activation occurs for
any possible output of Bob when two identical copies
of same state from this class are used in the network (see
Fig.6). For instance, when two identical copies of Ω1 for
β1 = 0.7 are considered as initial states, steerability is
activated genuinely for s1 ∈ (0.77, 1].

7 Discussions

In different information processing tasks, involving
steerable correlations, better efficiency of the related
protocols(compared to their classical counterparts)
basically rely upon quantum entanglement. Though
pure entanglement is the most suitable candidate, but
owing to environmental effects, mixed entanglement is
used in practical scenarios. In this context, any steer-
able mixed entangled state is considered to be useful.
In case it fails to generate steerable correlations, it will
be interesting to exploit its steerability(if any) by sub-
jecting to suitable sequence of measurements. Entangle-
ment swapping protocol turns out to be an useful tool
in this perspective. Let us consider the two families of
states given by Eqs. (10, 11). Both of them are noisy
versions of pure entangled states ϕ. To be more specific,
these families are obtained via amplitude damping of ϕ
[71]. As already discussed above, steering activation is
obtained via entanglement swapping protocol for some
members from these two families. This in turn point
out that entanglement swapping protocol is useful in
exploiting steerability from unsteerable [up to the steer-
ing criteria given by Eq. (5)] members from these two
families. All such discussions in turn point out the util-
ity of steerability activation in network scenarios from
practical viewpoint. Characterization of arbitrary two
qubits states will thus be helpful in exploiting utility
of any given two qubit state in the ambit of steering
activation [up to Eq. (5)]. That steerability of depo-
larized noisy versions of pure entangled states cannot
be activated (in approach considered here) is a direct
consequence of such characterization owing to the fact
that this class of noisy states has no local Bloch vec-
tor. Apart from revealing hidden steerability, it will
be interesting to explore whether the activation proto-
cols can be implemented in any information processing
task involving network scenario so as to render better
results.

In [72], the authors have shown that if a two qubit
state is F3 steerable, i.e., satisfies Eq. (5), then it is use-
ful for teleportation. This in turn points out the utility
of the activation networks discussed here in perspective
of information theoretic tasks. To be more precise, con-
sider, for example, the tripartite linear network (Fig.
1). Both the initial states ρAB , ρBC used in the net-
work violates Eq. (5). So ρAB(ρBC) cannot be used to
teleport qubit from Alice to Bob (from Bob to Charlie).
Now, if steerability is activated in the network stochas-
tically, resulting conditional state can be used for the
purpose of teleportation. In case, activation occurs for
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all possible outputs of Bob, any of the four conditional
states turns out to be useful in teleportation protocol.

Now our analysis of activation in network scenarios is
criterion specific and we have just provided partial char-
acterization of two qubit state space in context of gen-
uine activation of steerability. The unsteerability crite-
rion [70] involves maximization over arbitrary measure-
ment directions [Eq. (23)]. Deriving closed form of this
criterion, genuine activation of steerability can be ana-
lyzed further. In star network scenario choice of the spe-
cific orthonormal basis [Eq. (19)] for joint measurement
by the central party(B) served our purpose to show that
increasing number of states nonlinearly can yield bet-
ter results compared to the standard three party net-
work scenario (Fig. 1). Also such activation scenario
is significant as hidden steerability is revealed when at
least one of the n parties sharing n-partite conditional
state can steer the particles of another party without
co-operation from remaining n−2 parties. Further anal-
ysis of such form of steerability activation(via notion of
reduced steering) using more general measurement set-
tings of the central party B will be a potential direction
of future research. It will also be interesting to analyze a
scheme of m copies of bipartite states arranged in a lin-
ear chain where activation occurs only after projection
on any of n < m copies.

In [73], the authors introduced notion of network
steering and network local hidden state (NLHS) mod-
els in networks involving independent sources. They
have provided with no-go results for network steering
in a large class of network scenarios, by explicitly con-
structing NLHS models. In course of their analysis they
have given an instance of both way steering activation
using family of Doubly-Erased Werner (DEW) states
[73]. Activation phenomenon considered there did not
rely on testing any detection criterion in form of steer-
ing inequality. So from that perspective, the activation
example [73] is comparable with that of genuine steering
activation in our work. Characterization of two qubit
state space based on genuine activation of steering dis-
cussed in Sect. 6.1 thus encompasses a broader class
of steering activation results compared to a specific
example of activation [73]. To this end one may note
that for analysis made there, authors considered not
only unsteerability but also separability of the states
distributed by the sources. Following that approach,
incorporating entanglement content of initial unsteer-
able states to explore genuine activation of steering will
be an interesting direction of future research.

Data Availability Statement This manuscript has no
associated data or the data will not be deposited. [Authors
comment: The manuscript has no data associated with it].

Appendix A

Proof of Theorem 1 Both ρ
′
AB [Eq. (17)] and ρ

′
BC

[Eq.(18)] violate Eq. (5). Hence,
∑3

j=1

√
t21jj ,

√
t22jj ≤

1 which imply that |tkjj | ≤ 1,∀k = 1, 2 and j =

1, 2, 3. Let Vb1b2 denote the correlation tensor of con-
ditional state ρ

(b1b2)
AC . Now, two cases are considered:

either one or both the parties have no non-null local
Bloch vectors. In both the cases, Tr(VT

b1b2
Vb1b2) =∑3

k=1(t1kkt2kk)2, ∀b1, b2 = 0, 1. Hence, for each of

Vb1b2 ,
√

Tr(VT
b1b2

Vb1b2) takes the form:

√
Tr(VT

b1b2
Vb1b2) =

√√√√
3∑

k=1

(t1kkt2kk)2

≤

√√√√√

√√√√
3∑

k=1

t41kk.

√√√√
3∑

k=1

t42kk

≤

√√√√√

√√√√
3∑

k=1

t21kk.

√√√√
3∑

k=1

t22kk

≤ 1. (26)

The second inequality holds as |tkjj | ≤ 1,∀k = 1, 2 and
j = 1, 2, 3 and the last is due to the fact that none of
the initial states satisfies Eq. (5). ��

Appendix B

Proof of Theorem 3 Here, �u1 = �u2 = Θ. ρAB and ρBC

thus have the form:

ρAB =
1
4
(I2×2 + I2 ⊗ �v1.�σ +

3∑

j1,j2=1

w1j1j2σj1 ⊗ σj2),

ρBC =
1
4
(I2×2 + I2 ⊗ �v2.�σ +

3∑

j1,j2=1

w2j1j2σj1 ⊗ σj2),

Let Λ [Eq. (20)] be applied on both ρAB and ρBC fol-
lowed by local unitary operations(to diagonalize the
correlation tensors). Let ρ

(2)
AB and ρ

(2)
BC denote the

respective canonical forms [Eq. (22)] of ρAB and ρBC

[70]:

ρ
(2)
AB =

1
4
(I2×2 +

3∑

j=1

w
′′
1jjσj ⊗ σj), (27)

ρ
(2)
BC =

1
4
(I2×2 +

3∑

j=1

w
′′
2jjσj ⊗ σj), (28)

Now ρ
(2)
AB and ρ

(2)
BC both satisfy unsteerability criterion

given by Eq. (23). This in turn gives:

Maxx1,x2,x3

√√√√
3∑

j=1

(xjw
′′
kjj)

2 ≤ 1
2
, k = 1, 2 (29)

where x̂ = (x1, x2, x3) denotes a unit vector. ��
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We next perform maximization over x̂ so as to obtain
a closed form of the unsteerability criterion in terms
of elements of correlation tensors of the initial states
ρ
(2)
AB and ρ

(2)
BC . Maximization over unit vector x̂: Taking

x̂ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)), maximization
problem in L.H.S. of Eq. (41) can be posed as:

Maxθ,φ

√
A(θ, φ) (30)

where,

A(θ, φ) = sin2(θ)(cos2(φ)(w
′′
k11)

2

+ sin2(φ)(w
′′
k22)

2) + cos2(θ)(w
′′
k33)

2 (31)

Now for any g1, g2 ≥ 0, Maxκ(g1 cos2(κ)+g2 sin2(κ)) is
g1 if g1 > g2 and g2 when g2 > g1. This relation is used
for maximizing A(θ, φ). In order to consider all possible
values of (w

′′
k11)

2, (w
′′
k22)

2 and (w
′′
k33)

2, we consider the
following cases:

Case1:(w
′′
k11)

2 > (w
′′
k22)

2: Then MaxφA(θ, φ) gives:

B(θ) = sin2(θ)(w
′′
k11)

2 + cos2(θ)(w
′′
k33)

2 (32)

Subcase1: (w
′′
k11)

2 > (w
′′
k33)

2, i.e., (w
′′
k11)

2 = Maxj=1,2,3

(w
′′
kjj)

2 : Then MaxθB(θ) = (w
′′
k11)

2. Hence,

Maxθ,φ

√
A(θ, φ) = |w′′

k11|. (33)

Subcase2:(w
′′
k11)

2 < (w
′′
k33)

2, i.e., (w
′′
k22)

2 < (w
′′
k11)

2 <

(w
′′
k33)

2 : Then MaxθB(θ) = (w
′′
k33)

2. Hence,

Maxθ,φ

√
A(θ, φ) = |w′′

k33|. (34)

Case2:(w
′′
k11)

2 < (w
′′
k22)

2: Then MaxφA(θ, φ) gives:

B(θ) = sin2(θ)(w
′′
k22)

2 + cos2(θ)(w
′′
k33)

2 (35)

Subcase1:(w
′′
k22)

2 > (w
′′
k33)

2, i.e., (w
′′
k22)

2 = Maxj=1,2,3

(w
′′
kjj)

2 : Then MaxθB(θ) = (w
′′
k22)

2. Hence,

Maxθ,φ

√
A(θ, φ) = |w′′

k22|. (36)

Subcase2:(w
′′
k22)

2 < (w
′′
k33)

2, i.e., (w
′′
k11)

2 < (w
′′
k22)

2 <

(w
′′
k33)

2 : Then MaxθB(θ) = (w
′′
k33)

2. Hence,

Maxθ,φ

√
A(θ, φ) = |w′′

k33|. (37)

So, combining all cases, we get:

Maxθ,φ

√
A(θ, φ) = Max3

j=1|w
′′
kjj |, k = 1, 2. (38)

So, the unsteerability criterion [Eq. (41)] turns out to
be:

Maxj=1,2,3|w′′
kjj | ≤ 1

2
. (39)

Table 4 State parameters of each of the four conditional
states are specified here

State �X1
�X2 T

ρ00
AC Θ Θ diag(w

′′
111w

′′
211,

−w
′′
122w

′′
222 , w

′′
133w

′′
233)

ρ01
AC Θ Θ diag(−w

′′
111w

′′
211,

w
′′
122w

′′
222 , w

′′
133w

′′
233)

ρ10
AC Θ Θ diag(w

′′
111w

′′
211,

w
′′
122w

′′
222 , −w

′′
133w

′′
233)

ρ11
AC Θ Θ diag(−w

′′
111w

′′
211,

−w
′′
122w

′′
222, −w

′′
133w

′′
233)

�X1, �X2 denote the local Bloch vectors corresponding to first
and second party, respectively, whereas T denote the cor-
relation tensor. diag(∗, ∗, ∗) stands for a diagonal matrix.
Clearly each of the conditional state is in its canonical form
[Eq. (22)]

where k = 1, 2 correspond to states ρ
(2)
AB and ρ

(2)
BC ,

respectively. So ρ
(2)
AB and ρ

(2)
BC and therefore ρAB and

ρBC are unsteerable. Steerability of state remaining
invariant under application of linear map [Eq. (20)],
considering the canonical forms ρ

(2)
AB and ρ

(2)
BC as the

initial states used in the network. Depending on the out-
put of BSM obtained by Bob (and result communicated
to Alice and Charlie), the conditional states shared
between Alice and Charlie are given by ρij

AC , i, j = 0, 1
(see Table 4). ∀i, j, ρij

AC has null local Blochs and diag-
onal correlation tensor.

Hence, for each of the conditional states, L.H.S. of
Eq. (23) turns out to be:

Maxx1,x2,x3

√√√√
3∑

j=1

(xjw
′′
1jjw

′′
2jj)2 (40)

Following the same procedure of maximization as
above, the optimal expression of the maximization
problem [Eq. (40)] is given by:

Maxj=1,2,3|w′′
1jjw

′′
2jj |

Using Eq. (39), the maximum value of Eq. (40) turns
out to be 1

4 . Each of the four conditional states thus sat-
isfies the unsteerability criterion [Eq. (23)]. So if both
the initial states satisfy Eq. (23) and have null local
Bloch vector (corresponding to first party), then none
of the conditional states generated in the network is
steerable. Hence genuine activation of steering does not
occur. States satisfies Eq. (5).
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Appendix C

Details of the numerical observation given in Sect. 6:
Without loss of any generality, of two initial states, let
ρBC has non-null Bloch vector corresponding to the first
party, i.e., �u1 = Θ, �u2 
= Θ. ρBC thus has the form:

ρBC =
1
4
(I2×2 + �u2.�σ × I2 + I2 ⊗ �v2.�σ

+
3∑

j1,j2=1

w2j1j2σj1 ⊗ σj2),

After applying Λ [Eq. (20)] followed by local unitary
operations, the canonical form ρ

(2)
AB of ρAB is given by

Eq. (27), whereas that of ρBC is given by:

ρ
(2)
BC =

1
4
(I2×2 + �u

′′
2 .�σ × I2 +

3∑

j=1

w
′′
2jjσj ⊗ σj), (41)

Now ρ
(2)
AB and ρ

(2)
BC both satisfy unsteerability criterion

given by Eq. (23). This in turn gives:

Maxx1,x2,x3

√√√√
3∑

j=1

(xjw
′′
1jj)2 ≤ 1

2
(42)

and

Maxx1,x2,x3(
�u
′′
2 .x̂)2 + 2

√√√√
3∑

j=1

(xjw
′′
2jj)2 ≤ 1 (43)

with x̂ = (x1, x2, x3) denoting unit vector. While the
closed form of Eq. (42) is given by Eq. (39) for k = 1,
the same for Eq. (43) is hard to derive owing to the
complicated form of the maximization problem involved
in it. Now as ρ

(2)
BC satisfies an unsteerability criterion

[Eq. (43)] so it is unsteerable and consequently violates
Eq. (5):

3∑

j=1

(w
′′
2jj)

2 ≤ 1 (44)

As discussed above, the canonical forms ρ
(2)
AB and ρ

(2)
BC

as the initial states used in the network. Depending
on Bob’s output, the conditional states shared between
Alice and Charlie are given by ρij

AC , i, j = 0, 1 (see
Table 5).

Let us consider ρ00
AC . Using state parameters (Table 5)

of ρ00
AC , L.H.S. of Eq. (23) becomes:

Maxx1,x2,x3((x1u
′′
21w

′′
111 − x2u

′′
22w

′′
122 + x3u

′′
23w

′′
133)

2

+sqrt

3∑

j=1

(xjw
′′
1jjw

′′
2jj)

2), (45)

Table 5 State parameters of each of the four conditional
states are specified here

State �X1
�X2 T

ρ00
AC (w

′′
111u

′′
21, Θ diag(w

′′
111w

′′
211,

−w
′′
122u

′′
22 , w

′′
133u

′′
23) −w

′′
122w

′′
222 , w

′′
133w

′′
233)

ρ01
AC (−w

′′
111u

′′
21, Θ diag(−w

′′
111w

′′
211,

w
′′
122u

′′
22 , w

′′
133u

′′
23) w

′′
122w

′′
222 , w

′′
133w

′′
233)

ρ10
AC (w

′′
111u

′′
21, Θ diag(w

′′
111w

′′
211,

w
′′
122u

′′
22 , −w

′′
133u

′′
23) w

′′
122w

′′
222 , −w

′′
133w

′′
233)

ρ11
AC (−w

′′
111u

′′
21, Θ diag(−w

′′
111w

′′
211,

−w
′′
122u

′′
22 , −w

′′
133u

′′
23) −w

′′
122w

′′
222, −w

′′
133w

′′
233)

�X1, �X2 denote the local Bloch vectors corresponding to first
and second party, respectively, whereas T denote the cor-
relation tensor. diag(∗, ∗, ∗) stands for a diagonal matrix.
Clearly each of the conditional state is in its canonical form
[Eq. (22)]

where u
′′
21, u

′′
22, u

′′
23 are the components of real valued

vector Bloch vector �u
′′
2 . In Eq. (45), maximization is to

be performed over x1, x2, x3, whereas the state param-
eters are arbitrary. Now the expression in Eq. (45) is
numerically maximized over all the state parameters
involved and also x1, x2, x3 under the following restric-
tions:

• w
′′
111 ≤ 1

2

• w
′′
122 ≤ 1

2

• w
′′
133 ≤ 1

2

• ∑3
j=1(w

′′
2jj)

2 ≤ 1.

While the first three restrictions are due to the unsteer-
ability of ρ

(2)
AB , i.e., given by Eq. (39) for k = 1,

the last restriction is provided by Eq. (44)(a conse-
quence of unsteerability of ρ

(2)
BC). Maximum value of

the above maximization problem [Eq. (45)] turns out
to be 0.75, corresponding maxima (alternate maxima
exists) given by w

′′
111 = 0.5, w

′′
122 = 0.454199, w

′′
133 =

0.46353, w
′′
211 = −1, w

′′
222 = 0, w

′′
233 = 0, u

′′
21 = 1,

u
′′
22 = 0, u

′′
23 = 0, x1 = 1, x2 = 0 and x3 = 0.

Maximum value less than 1 implies that the original
maximization problem [Eq. (45)], where maximization
is to be performed only over x1, x2, x3(for arbitrary
state parameters) under the above restrictions (result-
ing from unsteerability of ρ

(2)
AB , ρ

(2)
BC), cannot render

optimal value greater than 1. Consequently conditional
state ρ00

AC satisfies the unsteerability criterion [Eq. (23)]
and is therefore unsteerable. So, in case Bob’s particles
get projected along |φ+〉, genuine activation of steering
does not occur in the linear network. In similar way,
considering, other three conditional states, it is checked
that the unsteerability criterion [Eq. (23)] is satisfied in
each case. Genuine activation of steering is thus impos-
sible for all possible outputs of Bob. Hence when one
of the initial states has null local Bloch vector corre-
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sponding to first party, genuine activation of steering
does not occur.

Appendix D

See Table 6.

Table 6 Bloch matrix parameters of each of the four condi-
tional states generated in the linear swapping network using
Ω3, Ω4 [Eq. (24)] as initial states are specified here

State �U �V T

ρ00
AC (0, 0, 0.98107) Θ diag(0.0729052,

−0.0729052, 0.0128697)
ρ01

AC (0, 0, 0.98107) Θ diag(−0.0729052,
00.0729052, 0.0128697)

ρ10
AC (0, 0, 0.907448) Θ diag(0.0729052,

0.0729052, 0 − 0.0128697)
ρ11

AC (0, 0, 0.907448) Θ diag(−0.0729052,
−0.0729052, 0 − 0.0128697)

�U, �V denote the local Bloch vectors corresponding to first
and second party, respectively, whereas T denote the cor-
relation tensor. diag(∗, ∗, ∗) stands for a diagonal matrix.
Now, for each conditional state, T being in diagonal form
and �V = Θ, for all i, j, ρij

AC is in its canonical form [Eq.
(22)]
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