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The flux distribution of individual blazars as a key to understand the
dynamics of particle acceleration
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The observed lognormal flux distributions in the high-energy emission from blazars have
been interpreted as being due to variability stemming from non-linear multiplicative processes
generated dynamically from the accretion disc. On the other hand, rapid minute scale variations
in the flux point to a compact emitting region inside the jet, probably disconnected from the disc.
In this work, we show that linear Gaussian variations of the intrinsic particle acceleration or
escape time-scales can produce distinct non-Gaussian flux distributions, including lognormal
ones. Moreover, the spectral index distributions can provide confirming evidence for the
origin of the variability. Thus, modelling of the flux and index distributions can lead to
quantitative identification of the micro-physical origin of the variability in these sources. As
an example, we model the X-ray flux and index distribution of Mkn 421 obtained from ∼9 yr of
MAXI observations and show that the variability in the X-ray emission is driven by Gaussian
fluctuations of the particle acceleration process rather than that of the escape rate.

Key words: acceleration of particles – galaxies: active – BL Lacertae objects: general – BL
Lacertae objects: individual: Mkn 421.

1 IN T RO D U C T I O N

Blazars are a special class of radio-loud active galactic nuclei
(AGNs) and their observed broad-band spectra are dominated by
non-thermal emission arising from radiative cooling of relativis-
tic electron distributions in powerful Doppler-boosted jets (Urry
& Padovani 1995). Additionally, blazar luminosity is observed to
vary over time-scales of years down to minutes and at all wave-
lengths across the electromagnetic spectrum. Despite many decades
of observations, the cause of the underlying variability is poorly
understood. The dominance of the non-thermal emission further
hinders our understanding of the accretion disc-jet connection in
these sources.

Irrespective of the origin, emission from blazars has been found
to be stochastic in nature, similar to that seen in other AGNs and
Galactic X-ray binaries (McHardy et al. 2006; Chatterjee et al.
2012; Nakagawa & Mori 2013; Sobolewska et al. 2014). Since
the past decade, much work has been done to understand the flux
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distribution of the lightcurves. For a linear stochastic process, a
Gaussian distribution of the flux is to be expected, with the width of
the distribution determining the flux variation. However, for the case
of the eponymous blazar BL Lac, a lognormal flux distribution was
clearly evident in the long-term X-ray light curves, with the average
amplitude of variability being proportional to the flux level (Giebels
& Degrange 2009). Henceforth, this behaviour has been witnessed
even in other blazars, and at different timescales and wavelengths
(H.E.S.S. Collaboration 2010; Chevalier et al. 2015; Kushwaha et al.
2016; Sinha et al. 2016, 2017; Shah et al. 2018). Such properties
were initially observed in the X-ray emission of the galactic black
hole binary Cygnus X-1 (Uttley & McHardy 2001), and are usually
interpreted as arising from multiplicative processes which originate
in the accretion disc (Lyubarskii 1997; Uttley, McHardy & Vaughan
2005; McHardy 2010). However, minute time-scale variability as
seen in many blazars (Gaidos et al. 1996; Aharonian et al. 2007;
Albert et al. 2007; Paliya et al. 2015) is difficult to originate from the
disc (Narayan & Piran 2012), and strongly favours the variability
to originate within the jet.

On the other hand, additive processes can also result in such dis-
tributions under specific scenarios. Biteau & Giebels (2012) stud-
ied the statistical properties of the mini jets-in-a-jet model of Gi-
annios, Uzdensky & Begelman (2009) and showed that the total
flux from randomly oriented mini jets will converge to an α-stable
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distribution. Further, inclusion of experimental uncertainties can
imitate such a distribution as a lognormal one. In this work, we
provide an alternate interpretation of the non-Gaussian signatures
seen in blazar variability through linear fluctuations of the under-
lying particle acceleration and/or the diffusive escape rate of the
emitting electrons. Such small Gaussian perturbations propagate to
produce non-linear flux distributions and linear flux-rms relations at
high frequencies. This can explain the lognormal behaviour in both
the long term stationary time series and during blazar flares, while
reproducing the observed flux-rms relations. Finally, this study is
used to interpret a plausible cause of variability in light curves ob-
tained from the MAXI observations for the brightest TeV blazar,
Mkn 421.

2 PE RT U R BAT I O N O N TH E I N T R I N S I C
TIME-SCALES

We consider a scenario where the non-thermal electrons responsi-
ble for the blazar emission are accelerated at a shock front (AR; the
acceleration region). Subsequently, they diffuse downstream (CR;
the cooling region), at a rate τ e

−1, where they radiate through syn-
chrotron and inverse Compton (IC) mechanisms (Kirk, Rieger &
Mastichiadis 1998; Sahayanathan 2008) The kinetic equation de-
scribing evolution of the electrons in the AR can be written as
(Kardashev 1962)

∂n(γ, t)

∂t
+ ∂

∂γ

[(
γ

τa
− Aγ 2

)
n(γ, t)

]
+ n(γ, t)

τe
= Q(γ ), (1)

where, γ /τ a is the electron acceleration rate and Aγ 2 is the radiative
loss rate.1Together, they govern the maximum attainable Lorentz
factor of the accelerated electrons, γmax = 1

Aτa
. The steady state

solution of equation (1) for a mono-energetic electron injection,
Q(γ ) = Q0δ(γ − γ 0), will be

n0(γ ) = Q0τaγ
−1− τa

τe

(
1 − γ

γmax

) τa
τe

−1( 1

γ0
− 1

γmax

)− τa
τe

. (2)

After injection into the CR, the evolution of these particles is gov-
erned by

∂ns(γ, t)

∂t
= ∂

∂γ
[Bγ 2ns(γ, t)] + n(γ, t)

τe
− ns(γ, t)

te
, (3)

where first term on the right hand side of equation (3) describes
the radiative loss rate in the CR, and the last term is the escape of
electrons from CR at a rate te

−1. The steady state solution of the
above equation will be a broken power law, with indices τ a/τ e +
1 and τ a/τ e + 2, and a break at energy 1/Bte. Since the indices of
the particle spectrum do not depend on the intrinsic time-scales of
the CR, this will not introduce any additional non-linearity in the
temporal behaviour. Moreover, as the radiative loss rate is ∝γ 2, the
resultant photon spectrum will again be a broken power law with
indices τ a/2τ e and (τ a + τ e)/2τ e respectively. The narrow width of
the single particle emissivity due to synchrotron and inverse Comp-
ton emission mechanisms, with respect to the power-law electron
distribution, further ensures that the photon spectrum will retain the
temporal behaviour of the underlying particle distribution. In addi-
tion, the shape of the flux distribution due to synchrotron and inverse

1Here, the radiative loss includes both synchrotron and inverse Compton
processes happening at Thomson regime. For high electron and target pho-
ton energies the Compton scattering process will happen at Klein–Nishina
regime and the loss rate will be different. However, here we confine or study
within the low-energy domain where Thomson approximation is valid.

Compton scattering of an external photon field will be similar to
that of electron number density since the corresponding emissivities
are proportional to the number density. On the other hand, for syn-
chrotron self-Compton process, the emissivity will depend on the
square of the electron distribution (Sahayanathan, Sinha & Misra
2018) and hence the variance of the distribution will be twice as
that of the electron distribution.

2.1 Gaussian perturbation on τ a

A small perturbation in the acceleration time-scale can introduce
variation in the accelerated particle number density. If we quantify
this variation in τ a as

τa = τa0 + �τa, (4)

where τ a0 corresponds to the mean acceleration timescale, the
change in the number density can be expressed as

n̄(γ ) = n̄0(γ ) + �n̄(γ ), (5)

where n̄0 is the steady state solution (equation 2) corresponding
to τ a = τ a0. Substituting equations (4) and (5) in the steady state
form of equation (1), the fractional variability in n̄(γ ) can then be
obtained as

�n̄(γ )

n̄(γ )
= f (γ )

�τa

τa
+ g(γ )

�τa

τe
, (6)

where

f (γ ) =
(

1

1 − γ /γmax

)
(7)

g(γ ) = log
γ0(1 − γ /γmax)

γ (1 − γ0/γmax)
− γ /γmax

1 − γ /γmax

+ γ0/γmax

1 − γ0/γmax

. (8)

From equation (6), it is evident that the variability in n̄(γ ) is a
linear combination of Gaussian and lognormal terms. The relative
amplitudes of these terms are decided by the functions f(γ ) and
g(γ ). For the case γ max → ∞, the lognormal term dominates when
γ � γ0 exp(τe/τa). Also in this case, the standard deviation of a
normally distributed τ a will be approximately τe/log(γ0/γ ) times
that of log n̄(γ ). Since the variability in photon index will be equal
to �τ a/2τ e, the standard deviation of the logarithm of the photon
flux distribution will be 2|log(γ 0/γ )| times the index distribution
(in case of synchrotron and external Compton processes).

To quantify the deviation of n(γ , t) from a Gaussian, we simulate
its temporal behaviour by solving equation (1) numerically using
finite difference scheme. Gaussian perturbations of varying widths
(στa

) are then introduced in τ a and the time series spanning over
5000 points of n(γ ) is computed for each case at different values
of γ . The values of γ 0 and γ max are kept fixed at 10 and 105

respectively. The generated time series are then investigated for
various statistical properties.

In Fig. 1(a), we plot the skewness of the accelerated electron
distribution (κn) as a function of στa/τa for different values of γ .
Since the fractional variation in the blazar spectral index during
different flux states is 15 per cent approximately (see Section 3),
we extend στa/τa variation up to 0.25. At low-electron energies
(γ ≈ 30) the skewness of the distribution is negligible indicating
a symmetric distribution. However, the distributions drift towards
highly tailed ones for increasing electron energies, thus implying a
deviation from Gaussianity. To investigate whether the skewed high-
energy electron distribution reflects a lognormal behaviour, we plot
in Fig. 1(c), the skewness of the logarithm of the number density
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Figure 1. Skewness (κ) of the simulated particle distribution as a function
of στa /τa and στe /τe is shown in (a) and (b), whereas the skewness of the
logarithm of the distribution as a function of στa /τa and στe /τe is shown in
(c) and (d). The solid line corresponds to electron with Lorentz factor γ = 30
(black), dashed line to γ = 102 (blue), dashed line to γ = 2 ∗ 102 (purple),
dashed line to γ = 5 ∗ 102 (magenta), short dashed line to γ = 103 (red)
and dotted line γ = 104 (green). The grey lines show the 3-σ (3

√
15/N )

error range (Press et al. 1992). The pink band shows the 1-σ error range for
the observed value for Mkn421 (Section 3).
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Figure 2. (a) Histogram of the simulated particle number density for
στa /τa = 0.1 and γ = 103. The dashed green line represents the best-fitting
Gaussian and the solid blue line represents the best-fitting lognormal PDF.
(b) The flux-rms scatter plot obtained by dividing the simulated time series
into 50 equal time bins. A strong positive correlation is clearly evident (ρ =
0.83, P = 4 × 10−26).

(κlog n) as a function of στa/τa. Here, the skewness is negligible for
increasing electron energies suggesting a possible drift towards a
lognormal distribution. To confirm this, we further fit the normalized
distribution of the number densities with Gaussian and lognormal
probability density functions (PDFs). We find that a lognormal PDF
significantly fits the distribution better at high-electron energies. In
Fig. 2(a), we show the normal and lognormal fit to the electron
distribution corresponding to γ = 103 and στa/τa = 0.1. Clearly,
the fit statistics is better for a lognormal with a reduced chi-square,
χ2

red ≈ 1.1 for 17 degrees of freedom (dof), than a Gaussian (χ2
red ≈

20.9 for 17 dof) PDF. The lognormal behaviour of the number
density n at large γ lets us express the skewness of the distribution
as

κn =
(

2 + eσ 2
log n

) √
eσ 2

log n − 1, (9)

where σlog n is the standard deviation of log n which can be approx-
imated as

σlog n ≈ g(γ )

τe
στa . (10)
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Figure 3. Spearman’s rank correlation coefficient ρ of the flux-rms scatter
plot as a function of (a) στa /τa and (b) στe /τe. The legends are same as in
Fig. 1. The pink band shows the 1-σ (0.6325/

√
N − 1) error range for the

observed value for Mkn421 (Section 3).

The energy dependence of σlog n will cause the skewness (κn) to
increase with energy which in turn can be an indicator for the
energy of the emitting electrons. It is evident from equations (9)
and (10) that for στa → 0, the distribution of n will closely reflect a
Gaussian behaviour.

A necessary feature of a lognormal behaviour is a linear depen-
dence of the average flux on its excess (rms) variation (Vaughan et al.
2003). Consistently, the electron number density at high energies
should reflect this behaviour and to examine this, we compute the
average number density and its variation, for a given γ and στa/τa,
by dividing the corresponding time series into 50 equal time bins.
In Fig. 2(b), we show the distribution of the average number density
and its variation for γ = 103 and στa/τa = 0.1. A Spearman’s rank
correlation study shows these quantities are significantly correlated
with correlation coefficient ρ = 0.83 with null hypothesis probabil-
ity P = 4 × 10−26. In Fig. 3(a), we plot the correlation coefficient
with respect to στa/τa for different values of γ . It can be noted that
the correlation improves with the increasing value of γ , thereby
supporting a lognormal behaviour.

2.2 Gaussian perturbation on τ e

In addition to the acceleration rate, the observed photon spectral
index will also depend on the confinement time of the electron
distribution within AR. In other words, a variation in the escape
timescale in AR can introduce non-linearity in the electron distri-
bution. To study this effect, we quantify the variation in escape
time-scale (τ e) in AR as

τe = τe0 + �τe (11)

and the corresponding change in the electron number density as

ñ(γ ) = ñ0(γ ) + �ñ(γ ), (12)

where ñ0 is the steady state solution (equation (2)) corresponding
to τ e = τ e0. Following the procedure similar to the case of τ a

(Section 2.1), substituting equations (11) and (12) in the steady
state form of equation (1), the fractional variability in ñ(γ ) can then
be obtained as
�ñ

ñ
= τa

�τe

τ 2
e

f (γ ), (13)

where

f (γ ) = log
γ (1 − γ0/γmax)

γ0(1 − γ /γmax)
. (14)

It is evident from equation (13), that while the resultant distribution
will be neither normal nor lognormal, it will be a skewed one.
Additionally, since the particle index p ∼ τa

τe
, the distribution of the

spectral indices will also be skewed.
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Figure 4. (a) Histogram of the simulated particle number density for
στe /τe = 0.1 and γ = 103. The dashed green line represents the best-fitting
Gaussian and the solid blue line, the best-fitting lognormal PDF. (b) The
flux-rms scatter plot obtained by dividing the simulated time series into 50
equal time bins. A weak positive correlation is seen (ρ = 0.26, P = 0.0071).

To further quantify the effect on the electron number density due
to a Gaussian fluctuation in τ e, we simulate the temporal behaviour
of n(γ , t) by solving equation (1) numerically (Section 2.1). In
Fig. 1(b), we show the skewness of the particle distribution (κn) as
a function of στe/τe for different values of γ . The distributions are
highly tailed for increasing values of γ supporting a non-Gaussian
behaviour. A similar behaviour is also observed in case of the skew-
ness of the logarithm of the number density (κlog n) which is shown
in Fig. 1(d). These studies suggest that the resultant electron number
density distribution is significantly skewed; however, it is neither
normal nor lognormal.

We also perform the Anderson Darling test on the distribution
of the electron number density for various γ . Consistent with our
earlier study, both Gaussian and lognormal fits are strongly rejected.
In Fig. 4(a), we show the normalized histogram of the electron
number density for γ = 103 and στe/τe = 0.1 fitted with Gaussian
and lognormal PDFs. Our fit result suggests both of these PDFs
cannot represent the given distribution with χ2

red ≈ 6.7 (dof=28)
for the Gaussian PDF and χ2

red ≈ 3.7 (dof = 28) for lognormal one.
To study the flux-rms relation, we divide the temporal evolution of
the number density into 50 equal time bins (Section 2.1), the average
number density and its rms variation corresponding to each bin is
determined. In Fig. 4(b), we show their distribution for the case of
γ = 103 and στe/τe = 0.1. A Spearman’s rank correlation study
suggests mild positive correlation between these quantities with
ρ = 0.26 and P = 0.0071. The variation of the flux-rms correlation
coefficient with respect to στe/τe is shown in Fig. 3(b) for different
values of γ . The correlation improves with increasing value of
γ ; however, it is less significant than the case of the Gaussian
perturbation on τ a.

3 D ISCUSSION

The flux-rms relation of individual blazars or the skewness shown by
the distribution of the flux are interpreted by several authors as aris-
ing from multiplicative processes, favouring a variability stemming
from the disc. Alternatively, Biteau & Giebels (2012) demonstrated
that such behaviour can also arise from a collection of randomly
oriented mini jets within the jet. They showed that the flux from a
randomly oriented mini jet will follow a Pareto distribution which
preserves the flux-rms relation. Further, the total flux due to several
randomly oriented mini jets will be a sum of Pareto distributions
that converge to an α-stable distribution. The resultant flux distri-
bution still holds the flux-rms relation; however, will neither be
normal nor lognormal one. Nevertheless, inclusion of experimental
uncertainties may imitate the distribution as a lognormal one.
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Figure 5. Histograms of the 10 d binned X-ray (a) spectral index at 2–
10 keV and (b) 2–20 keV flux of Mkn 421 spanning over 9 yr. The dashed
green line corresponds to the best-fitting Gaussian function, whereas the
solid blue line corresponds to the best-fitting lognormal one.

In this work, we show that small temporal fluctuations in the
intrinsic time-scales in the AR is capable of producing particle
distributions with non-Gaussian signatures and significant flux-rms
correlations. The novelty of this work is that it connects the long
term temporal behaviour of the blazars with the relatively shorter
time-scales of the acceleration process, and provide clues on elec-
tron energies responsible for the emission. To highlight this, we
study the X-ray observations of the blazar Mkn 421 by MAXI satel-
lite, spanning over 9 yr ranging from 2009 to 2018 (Matsuoka et al.
2009). While the integrated counts obtained from a 10 d binned
light curve showed a lognormal behaviour with χ2

red ≈ 1.43 for 7
dof and σ = 0.33 ± 0.02 over a Gaussian one with χ2

red ≈ 9.84 for 7
dof (Fig. 5b), the spectral indices estimated from the hardness ratio
between 4–10 keV and 2–4 keV fluxes were normally distributed
with χ2

red ≈ 0.81 for 10 dof, mean mp = 2.1 ± 0.022 and standard
deviation σ p = 0.31 ± 0.096 (Fig. 5a). This suggests that the plau-
sible physical process responsible for the observed flux variation is
associated with the fluctuations in the particle acceleration rate. The
fractional variation in acceleration time-scale can then be identified
from σ p and mp of the index distribution as στa/τa ≈ 0.148 ± 0.046 .
A comparison of Fig. 1(a) with this value and the observed skew-
ness of κ = 1.27 ± 0.24 suggests the emission to originate from
electrons with γ range ∼102–103. From Fig. 3(a), we see that this
value of γ is consistent with the observed correlation co-efficient
ρ = 0.74 ± 0.04. However, this estimate of γ is significantly lower
than the electron energies obtained through the broad-band spectral
modelling of the source using synchrotron and inverse Compton
emission mechanisms (Donnarumma et al. 2009; Abdo et al. 2011;
Sinha et al. 2016; Zhu et al. 2016). This discrepancy can be associ-
ated with the low value of the injection Lorentz factor γ 0 which is
fixed at 10 for this study. From equations (8), (9), and (10), it is evi-
dent that the skewness is a function of γ 0/γ rather than γ alone. For
a given κ , higher values of γ 0 can result in large γ values that may
be consistent with the ones obtained through spectral modelling.

While the lognormal distribution obtained from the light curve
of blazars are generally integrated over a certain energy band, here
we have quantified the distributions at some fixed electron energy.
However, to be consistent with the observations, we verified our
results for integrated number densities between different electron
energies. We found that our results remain qualitatively similar to
that obtained for the case of mono-energetic electron, being strongly
dominated by the number counts at the lower energies.

4 C O N C L U S I O N

Through this work, we show that non-Gaussian flux distributions
observed in blazars can be associated with the perturbations in
the intrinsic time-scales of the main particle acceleration region.
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A lognormal flux distribution with the spectral indices showing
a Gaussian behaviour can be attributed to the fluctuations in the
acceleration rate, whereas fluctuations in the electron escape rate
can cause flux/index distributions which significantly differ from
Gaussian and lognormal ones. Given well sampled multiwavelength
lightcurves, this study can be effectively utilized to identify the un-
derlying physical processes, specifically in estimating the fractional
fluctuations in the intrinsic time-scales and also the typical electron
energies responsible for emission in the different frequency bands.
In addition, by a comparison of the flux distributions at different en-
ergies (e.g X-ray and gamma-ray), it is possible to identify whether
the emission is associated with similar electron energies and thus,
constrain spectral models.
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