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Abstract
Analyzing shareability of correlations arising in any physical theory may be considered
as a fruitful technique of studying the theory. Our present topic of discussion involves
an analogous approach of studying quantum theory. For our purpose, we have deviated
from the usual procedure of assessing monogamous nature of quantum correlations in
the standard Bell-CHSH scenario. We have considered correlations arising in a quan-
tum network involving independent sources. Precisely speaking, we have analyzed
monogamy of nonbilocal correlations by deriving a relation restricting marginals.
Interestingly, restrictions constraining distribution of nonbilocal correlations remain
same irrespective of whether inputs of the nodal observers are kept fixed (in different
bilocal networks) while studying nonbilocal nature of marginal correlations.

Keywords Quantum correlations · Monogamy · Bell locality · Quantum network ·
Bilocality

1 Introduction

Entanglement and nonlocality, the two most intrinsic features of quantum theory, play
ubiquitous role in analyzing departure of the theory from the classical world. While
the former is a property of quantum states [1], the latter mainly characterizes nature of
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correlations arising due to measurements on quantum systems [2–4]. Considered to be
two inequivalent resources in general, both of these features form the basis of various
information processing tasks such as device-independent entanglement witnesses [5],
quantum key distribution (QKD) [6–9], Bayesian game theoretic applications [10],
private randomness generation [11,12], etc, which cannot be performed by any classi-
cal resource. One of the inherent features responsible for strengthening efficiency of
quantum resources over classical ones is the existence of restrictions over shareability
of quantum particles or quantum correlations in multiparty scenario [13–24].

Research activities conducted so far clearly point out the existence of limitations
over shareability of both quantum nonlocality [13,15] and entanglement [14,20–24].
Such sort of limitations is frequently referred to as monogamy of nonlocality and
entanglement, respectively. Precisely speaking, let a tripartite state be shared between
three parties, say, Alice, Bob and Charlie. If Alice’s qubit is maximally entangled with
that of Bob, then neither the state shared between Alice and Charlie nor that between
Bob and Charlie is entangled. Now consider the tripartite correlations generated due
to measurements on a quantum system shared between Alice, Bob and Charlie. If
the marginal correlations shared between any two parties, say Alice and Bob violate
Bell-CHSH inequality [25] maximally then neither marginal shared between Alice
and Charlie nor that shared between Bob and Charlie can show Bell-CHSH violation.
However, no such restriction exists over shareability of classical correlations. Over
years, different trade-off relations have been designed to capture monogamous nature
of not only quantum correlations but also of correlations abiding by no signaling
principle [26]. Our present topic of discussion is contributory in this direction. To be
precise, we have explored shareability of correlations characterizing quantum bilocal
network.

Over past few years, there has been a trend of studying quantum networks involving
independent sources [27,28]. Network involving two independent sources is referred
to as ‘bilocal’ network (see Fig. 1). It was first introduced in [27]. Since then study of
quantum networks characterized with source independence has been subject matter of
thorough investigations [29–38] due to multi-faceted utility of the source independence
assumption both from theoretical and experimental perspectives such as lowering
down restrictions for detecting quantumness (nonclassical feature) in a network via
some notions of quantum nonlocality (different from the standard Bell nonlocality)
[30,33]. Besides, it is found to be important to study detection loophole in some
local models [39,40]. From experimental perspectives, source independent networks
form basis of various experiments related to quantum information and communication
such as various device-independent quantum information processing tasks [5,8–10],
some communication networks dealing with entanglement percolation [41], quan-
tum repeaters [42] and quantum memories [43], etc. Owing to the significance of
these networks, study of correlations generated in such networks has gained immense
importance. In this context, one obvious direction of investigation evolves around man-
ifesting shareability of correlations in such networks. Our discussions will channelize
in that direction.

To the best of authors’ knowledge, research activities on monogamy of quantum
correlations, conducted so far, basically consider the standard Bell scenario [13,15].
Here, we have shifted from that usual notion of Bell-CHSH nonlocality thereby explor-

123



Restricted distribution of quantum correlations in bilocal… Page 3 of 17 212

ing shareability of quantum correlations in spirit of nonbilocality [27,28]. Precisely
speaking, we have considered quantum network involving two independent sources
with an urge to investigate whether nonclassical feature of quantum correlations gener-
ated in such networks exhibit monogamy or not. We have obtained affirmative answer
to this query which in turn points out the indifference between the two notions of
nonlocality: Bell-CHSH nonlocality and nonbilocality in context of characterizing
shareability of quantum correlations.

One may note that for studying monogamy in the standard Bell-CHSH scenario, it
is assumed that the nodal party (for instance Alice in the example discussed before) has
fixed measurement settings. For instance, to analyze Bell violation by each of two sets
of bipartite correlations: P(a, b|x, y), shared between Alice, Bob and P(a, c|x, z),
shared between Alice, Charlie (a, b, c and x, y, z denoting binary outputs and inputs
of Alice, Bob and Charlie, respectively), Alice’s measurement settings are assumed
to be fixed. However, recently, in [44], a trade-off relation has been suggested giv-
ing restriction over upper bound of Bell-CHSH violation by all the possible bipartite
marginals where the measurement settings of nodal party were not assumed to be
fixed. Here, we have firstly derived a monogamy relation for nonbilocal correlations.
Then, we have relaxed the assumption of fixed setting by nodal party, thereby design-
ing a trade-off relation restricting the nonbilocal nature of the marginal correlations.
Interestingly, nature of restrictions to exhibit nonbilocality by the marginals remains
invariant irrespective of the assumption of fixed measurement settings of nodal party.
Throughout the manuscript we have considered that each party has a two-dimensional
quantum system under its control.

Rest of the article is organized as follows. First, we discuss some ideas motivating
our work in Sect. 2. Next in Sect. 3, we give a brief review of the bilocal network
scenarios and some results related to these scenarios which in turn will facilitate
our further discussions. In Sect. 4, we first sketch the network scenario(s) in details.
Depending on inputs and also outputs of some of the parties (involved in the scenario),
we basically consider two scenarios. Then, we derive the monogamy relation in Sect. 4
followed by a trade-off relation in Sect. 5 restricting the correlations generated therein.
Some practical implications of our findings have been discussed in Sect. 6. Finally, we
have concluded in Sect. 7 discussing possible future directions of research activities.

2 Motivation

As already pointed out before, in recent times, study of quantum networks (with inde-
pendent sources) has gained paramount interest [29–36]. So, in context of analyzing
nonclassicality of quantum correlations in such networks, assessment of monogamous
nature (if any) of the correlations is crucial for developing a better insight in related
fundamental issues. Interestingly, from practical view point, existence of restrictions
over shareability of quantum correlations is utilized to design quantum secret sharing
protocol secure against eavesdropping [45–47]. To be specific, it is this nonclassical
feature of quantum correlations that plays a vital role to provide security against exter-
nal attack better than any classical protocol. So, if monogamous nature of correlations
arising in quantum networks involving independent sources can be guaranteed then
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that will be definitely helpful for security analysis in secret sharing protocols involving
such networks. So possible issues related with restricted shareability of quantum cor-
relations in network scenario deserve detailed investigations. This basically motivates
our current topic.

3 Preliminaries

3.1 Bilocal scenario

Bilocal network as designed in [27,28] is shown in Fig. 1. Out of three scenarios
described in [28], here we consider two scenarios, namely P14 and P22 scenarios
involving bilocal network. The network involves three parties Alice(A), Bob(B) and
Charlie(C) and two sources S1 and S2. All the parties and sources are arranged in a
linear fashion. A source is shared between any pair of adjacent parties. Sources S1 and
S2 are independent to each other (bilocal assumption). A physical system represented
by variables λ1 and λ2 is send by S1 and S2, respectively. Bob receives two particles
(one from each of S1 and S2). Independence of λ1 and λ2 is ensured by that of S1 and
S2. In both P14 and P22 scenarios, each of Alice and Charlie can perform dichotomic
measurements on their systems. The binary inputs are denoted by x, z ∈ {0, 1} for
Alice and Charlie, and their outputs are labeled as a, c ∈ {0, 1}, respectively. Bob
performs measurement on the joint state of the two systems that he receives from
S1 and S2. In P22 scenario, Bob performs two dichotomic measurements y ∈ {0, 1}
having outputs b ∈ {0, 1}.

In P14 scenario, Bob performs single measurement y having 4 outputs b = −→
b =

b0b1 = 00, 01, 10, 11.
In both scenarios, the correlations obtained in the network are local if they take the

form: P(a, b, c|x, y, z) = ∫∫
dλ1dλ2ρ(λ1, λ2)U

where U = P(a|x, λ1)P(b|y, λ1, λ2)P(c|z, λ2) (1)

where λ1 characterizes the state of the bipartite system produced by the source S1 and
λ2 for the system S2. Tripartite correlations P(a, b, c|x, y, z) are bilocal if they can
be decomposed in above form (Eq. (1)) together with the restriction:

ρ(λ1, λ2) = ρ1(λ1)ρ2(λ2) (2)

Fig. 1 Schematic diagram of a
bilocal network [27,28]. In P22

scenario, y corresponds to two
inputs of Bob y0 and y1 and b
corresponds to two outputs b0
and b1. In P14 scenario, y
corresponds to single input of
Bob and b corresponds to 4
outputs b0b1 = 00, 01, 10, 11
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imposed on the probability distributions of the hidden variables λ1, λ2. Eq. (2) refers
to the bilocal constraint. Tripartite correlations of the form (Eq. (1)) and (Eq. (2)) are
bilocal if they satisfy the inequality [28]:

√|I | + √|J | ≤ 1 (3)

Terms appearing in above equation are discussed in Table 1. Denoting
√|I | + √|J |

as B, Eq. (3) becomes:

B ≤ 1 (4)

Clearly, violation of Eq. (4) acts as a sufficient criterion for detecting nonbilocality of
corresponding correlations. In [36,37], referring B as bilocality parameter, an upper
bound of quantum violation of the bilocal inequality (Eq. (4)) has been derived for both
P22 scenario [36] and P14 scenario [37]. We next briefly review scenarios considered
in [36,37] along with some of the related findings which will be used later in course
of our work.

3.2 Bilocal quantum network [27,28]

Let each of S1 and S2 sends a two qubit quantum state. Let S1 sends ρAB to Alice and
Bob, whereas S2 sends ρBC to Bob and Charlie. In general, any bipartite state density
matrix representing a quantum state (ρ, say) can be defined as:

ρ = 1

22

3∑

i1,i2=0

Ti1i2σ
1
i1

⊗
σ 2

i2
(5)

with σ k
0 , denoting the identity operator in the Hilbert space of kth qubit and σ k

ik
, denote

the Pauli operators along three mutually perpendicular directions, ik = 1, 2, 3. The
entries of the correlation matrix Tρ of ρ denoted by Ti1i2 are real and given by:

Ti1i2 = Tr[ρσ 1
i1

⊗
σ 2

i2
], i1, i2 ∈ {1, 2, 3}. (6)

Let TAB and TBC denote correlation tensor of state ρAB and ρBC, respectively, and let
upper bound of violation of the bilocal inequality (Eq. (4)) be given by BMax. Recently,
BMax has been derived for both the scenarios [36,37]. Interestingly, irrespective of
variation in measurement settings of Bob (see Table 2), closed form of BMax turns out
to be same:

BMax =
√√
√
√

2∑

i=1

√
ωA

i ∗ ωC
i , ω

A(C)
1 > ω

A(C)
2 , (7)

with ωA
1 and ωA

2 (ωC
1 and ωC

2 ) are the larger two eigenvalues of T T
ABTAB(T T

BC TBC ).
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Table 2 The table provides the
measurement settings of Bob for
both the scenarios. fii

A denotes
the direction along which Bob
performs projective
measurement on the particle that
it receives from source S1 and
fii

D denotes the direction along
which Bob performs projective
measurement on the particle that
it receives from source S2. Alice
and Charlie perform projective
measurements in two arbitrary
directions: i.œ and i.œ(i = 0, 1),
respectively [36,37]

Scenario Bob’s measurement settings

P22 [36] fii
A.œ ⊗ fii

D .œ(i = 0, 1)

i.e., Bob performs separable
measurements on joint state of two
qubits (received from S1 and S2)

P14 [37] Bob performs full Bell-state
measurements, i.e., he measures
joint state of two qubits in

Bell-basis. Projection of the joint
state in a Bell state thereby
corresponding to an output (total 4)

Fig. 2 Schematic diagram of network N . In P22 scenario y, z corresponds to two inputs of Bob y0 and y1
and two inputs of Charlie z0 and z1, respectively. b corresponds to two outputs b0 and b1 of Bob, and likewise
c denotes two outputs of Charlie c0, and c1. In P14 scenario y, z corresponds to Bell-state measurement
(single input) of Bob and Charlie, respectively. b corresponds to 4 outputs: b0b1 = 00, 01, 10, 11 according
to projection of the joint state of two qubits in Bob’s control in Bell state |φ+〉, |φ−〉, |ψ+〉 and |ψ−〉,
respectively. Analogously 4 outputs of Charlie are denoted by c0c1 = 00, 01, 10, 11

After discussing the mathematical pre-requisites, we proceed to present our find-
ings.

4 Nonbilocal monogamy

For our purpose, we have considered P22 scenario and P14 scenario under the assump-
tion that Bob performs Bell-state measurement (as stated in Table 2). For exploring
restriction(if any) over shareability of nonbilocal correlations, first we define the net-
work (Fig. 2) which will encompass both the scenarios.

4.1 Quantum network scenario

Consider a network (N ) involving four parties Alice, Bob, Charlie, Dick and two
independent sources S1 and S2. Each of the two sources generates a tripartite quantum
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state. Let S1 generates ρABC, sending a qubit to each of Alice, Bob and Charlie. Anal-
ogously, S2 generates ρBCD, sending a qubit to each of Bob, Charlie and Dick. So,
each of Bob and Charlie receives two qubits, whereas remaining two parties receives
one qubit each. Let Bob and Charlie be referred to as intermediate parties, whereas
Alice and Dick be referred to as extreme parties. The extreme parties perform arbitrary
projective measurements locally on their qubits. Inputs of Alice and Dick are labeled
as x, w ∈ {0, 1} and outputs as a, d ∈ {0, 1}, respectively. Each of two intermedi-
ate parties Bob and Charlie performs measurements on joint state of its two qubits.
In P22 scenario, each of Bob and Charlie performs dichotomic measurements, i.e.,
y, z ∈ {0, 1} with corresponding outputs b, c ∈ {0, 1}, whereas in P14 scenario each of
them can perform a single measurement having four outputs (as discussed in Sect. 3).
We consider some specific forms of measurements for Bob and Charlie in both the
scenarios. While in P22 scenario, each of Bob and Charlie can perform separable mea-
surements [36], in P14 scenario each of them performs Bell-state measurement (BSM)
[37] on the joint state of the two qubits sent by the sources. In both these scenarios, four
partite correlation terms P(a, b, c, d|x, y, z, w), arising due to measurements by the
parties on their respective qubits characterize the network (N ). Let WB and WC denote
the set of tripartite marginals P(a, b, d|x, y, w) and P(a, c, d|x, z, w), respectively.
Now WB can be interpreted as the set of tripartite correlations arising due to binary
measurements by each of three parties Alice, Bob and Dick in a network involving two
independent sources S1 and S2. Hence, correlations from WB characterize the bilocal
network (NB , say) involving Alice, Bob and Dick. Analogously, WC characterizes
bilocal network (NC , say) involving parties Alice, Charlie and Dick. Each of the two
bilocal networks NB and NC may be referred to as a reduced network obtained from
the original bilocal network N . Clearly, extreme parties of N are common in both the
reduced networks (NB, NC ) and may be referred to as the nodal parties. In Fig. 3, we
give a flowchart to design the scenario involved herein.

Now, we put forward the monogamy relation restricting nonbilocality of the tripar-
tite marginals P(a, b, d|x, y, w) and P(a, c, d|x, z, w) in both the scenarios.

4.2 Restrictions over quantum correlations

Theorem 1 Under the assumption that each of the extreme parties performs separable
measurements or Bell-state measurements, if BB

Max and BC
Max denote the upper bound

of violations of bilocal inequality (Eq. (4)) by correlations P(a, b, d|x, y, w) and
P(a, c, d|x, z, w), respectively, then,

(BB
Max)

2 + (BC
Max)

2 ≤ 2. (8)

Proof This theorem basically follows from the proof of Theorem 2 which will be
discussed shortly.

Compared to a single nodal (common) party in standard Bell scenario, here, mea-
surement settings of both the nodal parties (Alice and Dick) are kept fixed in order
to sketch the monogamy relation (Eq. (8)). Alice and Dick’s fixed measurement set-
tings mainly refer to the fact each of their measurement settings remain unchanged
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Fig. 3 A flowchart underlying our scheme of testing correlations is provided thereby listing all the steps
involved therein. Due to nonbilocal monogamy (or trade-off relation) given by Eq. (8), any one of the two
observations given in the two blocks at the end of the chart occurs. For deriving monogamy relation, Alice
and Dick’s measurement settings are kept fixed while collecting correlations in WB and WC . For sketching
trade-off relation, no such restriction is imposed over their settings

in both the reduced networks NB, NC . To be precise, if Alice(Dick) performs mea-
surement MA(MD) in network NB , then in network NC also measurement setting of
Alice(Dick) is MA(MD). As BMax has the same form(Eq. (7)) in both P14 and P22

scenarios, so the inequality imposing restrictions on correlations in the two scenarios
remains invariant.

Tightness of the constraint: By tightness of the monogamy relation given by Eq. (8),
we interpret the existence of quantum correlations reaching the upper bound 2. For a
particular instance, let each of the two sources S1 and S2 generates identical copy of
a W state [48]:

|�〉 = cos μ0|001〉 + sin μ1 sin μ0|010〉 + sin μ0 cos μ1|100〉 (9)
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where μi (i = 0, 1) ∈ [0, π
2 ]. Let, for μ0 = π

2 , identical copies of the corresponding
state(|�〉〈�|) are used in the network (N ). Let 1st, 2nd and 3rd qubit of one copy
are sent to Alice, Bob and Charlie, respectively, whereas 1st, 2nd and 3rd qubit of
second copy are sent to Dick, Bob and Charlie, respectively. Using the upper bound
of violation given by Eq. (7) we get (BB

Max)
2 + (BC

Max)
2 = √

(Max[0, cos2(2μ1)])2 +√
(Max[1, sin2(2μ1)])2 +√

(Min[0, cos2(2μ1)])2 +
√

(Min[1, sin2(2μ1)])2. Clearly
on simplification, (BB

Max)
2 + (BC

Max)
2 = 2.

Before discussing any further observation, we first put forward a lemma. 
�
Lemma Under the assumption that Bob performs separable measurements in P22

scenario [36] and Bell-state measurement (BSM) in P14 scenario [37], maximal vio-
lation of the bilocal inequality (Eq. 4) is

√
2, maximum being taken over all possible

quantum states .

Proof From upper bound of violation of bilocal inequality (Eq. (4)) given by Eq. (7),

B2
Max =

2∑

i=1

√
ωA

i ∗ ωC
i . (10)

By Cauchy–Schwarz’s inequality, we get

B2
Max ≤

√
ωA

1 + ωA
2

√
ωC

1 + ωC
2 (11)

Now
√

ωA
1 + ωA

2 = M(ρAB) and likewise
√

ωC
1 + ωC

2 = M(ρBC) where 2M(ρ)

denote maximal violation of Bell-CHSH inequality by a quantum state ρ [49]. Again,
maximal possible quantum violation of Bell-CHSH is given by 2

√
2, referred to as

Tsirelson’s bound [50]. Hence, maximal possible quantum violation of the bilocal
inequality (Eq. (4)) turns out to be

√
2. 
�

The monogamy relation (Eq. (8)) puts restrictions over distribution of nonbilocal
correlations among the two networks NB and NC in both P14 and P22 scenarios.
To be precise, maximal violation of bilocal inequality (Eq. (4)), being

√
2, both of

(B B
Max)

2 and (BC
Max)

2 could have been 2. But, this becomes impossible due to the
restriction imposed by Eq. (8). Moreover, if any one set of tripartite marginals, say
P(a, b, d|x, y, w) (WB set) shows violation of the bilocal inequality, the others set
(WC ) of marginals does not violate the bilocal inequality. So, generation of nonbilocal
correlations in one reduced network (NB , say) guarantees (considering generation of
nonbilocal correlations up to detection by the sufficient criterion provided by viola-
tion of the bilocal inequality (Eq. (4))) the absence of any such nonclassical feature
(nonbilocality) of quantum correlations in the other reduced network system (NC ).
Hence, if maximal violation of bilocal inequality is observed in one reduced network
(NB , say), then correlations from NC cannot violate the bilocal inequality (Eq. (4)))
and hence may not be nonbilocal. Such an observation is analogous to existing results
related to monogamy of quantum entanglement and nonlocality (standard Bell-CHSH
sense).
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5 Nonbilocal trade-off relation

Monogamy relation (Eq. (8)) guarantees existence of restrictions over distribution of
nonbilocal correlations in reduced bilocal network systems. As already mentioned in
the previous section, analogous to monogamy of nonlocal correlations in standard
Bell-CHSH sense, measurement settings of nodal parties are kept fixed (in both the
scenarios) for assessing monogamy of nonbilocal correlations. However, in [44], it
was pointed out that comparison of monogamy and trade-off relations of nonlocal
correlations guarantees relaxation of restrictions over shareability of nonlocal corre-
lations among bipartite reduced states. Such an observation is quite intuitive owing to
the fact that in contrast to fixed measurement settings of the nodal party (considering
nature of the bipartite marginals for sketching monogamy relation), for giving trade-off
relation (connecting amount of Bell-CHSH violation by the bipartite marginals), the
measurement settings for the nodal parties are not considered to be invariant. Hence,
optimization over parameters characterizing inputs of the nodal parties is possibly
separate while considering Bell-CHSH violation by each of the reduced states. For
instance, it may so happen that Bell-CHSH violation by reduced state 
AB (obtained
from state 
ABC), is optimized for one measurement direction (x0, say) of Alice while
the same by reduced state 
AC is optimized for some other measurement direction
(x1 �= x0, say) of Alice.

In this context, one may expect to encounter analogous observations in case of
characterizing shareability of nonbilocal correlations. However, our findings guaran-
tee somewhat counterintuitive feature. To be precise, relaxation of the restriction over
nodal parties to have fixed measurement settings in both reduced networks fails to relax
restrictions over shareability of nonbilocal correlations (up to existing sufficient crite-
rion of detection of nonbilocality, i.e., violation of Eq. (3)). Also, proof of Theorem.1
turns out to be a special case of the proof of the following theorem.

Theorem 2 In both P14 (Bob and Charlie performing Bell-state measurement) and
P22 scenario (Bob and Charlie performing separable measurements), trade-off rela-
tion satisfied by upper bound of violation of bilocal inequality (Eq. (4)) by tripartite
marginals in reduced networks NB and NC is same as the monogamy relation given
by Eq. (8).

Proof Each of Bob and Charlie performs separable measurements in P22 scenario,
whereas perform Bell-state measurement in P14 scenario. In either of these scenarios,
measurement settings of the nodal parties Alice and Dick may vary while considering
violation of bilocal inequality in each of the two reduced networks (NB and NC ).
Hence, by Eq. (11), we get:

(BB
Max)

2 + (BC
Max)

2

≤
√

ιB
1 + ιB

2

√
�B

1 + �B
2 +

√
ιC1 + ιC2

√
�C

1 + �C
2 (12)

where �B
1 ≥ �B

2 ≥ �B
3 , �C

1 ≥ �C
2 ≥ �C

3 , ιB
1 ≥ ιB

2 ≥ ιB
3 and ιC1 ≥ ιC2 ≥ ιC3 are

the eigen values of T T
ABTAB, T T

ACTAC, T T
BDTBD and T T

CDTCD, respectively. Applying
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A.M.≥G.M. over the positive terms ιB
1 + ιB

2 ,�B
1 + �B

2 ; ιC1 + ιC2 , and �C
1 + �C

2 , we
get,

ιB
1 + ιB

2 + �B
1 + �B

2 + ιC1 + ιC2 + �C
1 + �C

2

2
.

Now for the state ρABC(generated by the source S1) which is shared between Alice,
Bob and Charlie [51],

�B
1 + �B

2 + �C
1 + �C

2 ≤ 2, (13)

Analogously, for the state ρBCD(generated by the source S2), we get,

ιB
1 + ιB

2 + ιC1 + ιC2 ≤ 2, (14)

Using, Eqs.(13,14), in Eq. (12), we get the required relation(Eq. (8)). 
�
Proof of Theorem 1 from that of Theorem 2 As has already been pointed out in the
proof of Theorem 2, nodal parties are free to choose different measurement settings
in the two reduced networks NB and NC . Let M B

A and MC
A denote measurement set-

tings of Alice in reduced network NB and NC , respectively. Likewise, let M B
D and MC

D
denote measurement settings of the other nodal party Dick in reduced network NB and
NC , respectively. So, quite obviously, M B

A = MC
A and M B

D = MC
D came as a special

case of all possible measurement settings of Alice (M B
A , MC

A ) and Dick (M B
D and MC

D).
But this special case corresponds to the restriction of fixed measurement settings of
nodal observers that is usually imposed for deriving monogamy relations and hence
corresponds to the assumptions of Theorem 1. This in turn guarantees assumptions
involving nodal observers’ inputs in Theorem 1 as a subcase of the assumptions over
nodal observers’ inputs in Theorem 2. Consequently, proof of Theorem 1 is following
from that of Theorem 2 and hence, monogamy relation and trade-off relation restricting
shareability of nonbilocal correlations are the same (Eq. (8)). 
�

Tightness of trade-off relation: Assumptions over nodal observers’ inputs in The-
orem.1 being a sub case of that in Theorem 2, tightness of trade-off relation follows
immediately from tightness of monogamy relation (Eq. (8)).

The trade-off relation, being of the same form as that of the monogamy relation,
restriction over shareability of nonclassical feature of quantum correlations (in terms
of nonbilocality) is the same irrespective of whether measurement settings of the
nodal parties remain fixed or not. Recent study on Bell-CHSH nonlocality reveals
analogous findings regarding the fact that restrictions over distribution of nonclassical
quantum correlations are independent of the fact whether nodal party’s inputs are fixed
or not. To be specific in [51], a trade-off relation restriction shareability of nonlocal
quantum correlations (Bell-CHSH) has been given which has the same form as that of
a monogamy relation of Bell-CHSH nonlocality which was previously given in [44].

As has already been mentioned before, one should note that all our observations are
applicable for qubits. This is a consequence of the fact that the network (see Fig. 2)
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involves sources which generate three qubit states. Whether our observations hold for
higher dimensional quantum systems is an area of open research work.

After ensuring existence of restriction over shareability of nonclassical correlations
in quantum network scenario (characterized by source independence), we now discuss
below practical significance of monogamy of nonbilocal correlations.

6 Practical implication

Establishing existence of restrictions over shareability of correlations in bilocal net-
works involving quantum systems, we now proceed to justify that such monogamous
nature of nonbilocal correlations may be used to provide security in quantum secret
key sharing protocol (actual design of any such protocol is however yet to be accom-
plished). Before starting the analysis, we briefly review an existing result involving
the use of monogamy of the standard Bell nonlocality in such a protocol.

In [46], Barrett et.al. proved a connection between the possibility of existence
of a protocol secure against postquantum eavesdropping and quantum violation of
Bell-CHSH inequality under nosignaling assumption. To be precise, they designed
a protocol involving two parties (Alice and Bob, say). Alice and Bob share identi-
cal copies of entangled states. At the end of the protocol, a secret bit is generated
in between Alice and Bob although the source, generating the entangled states, is
controlled by eavesdropper. Security of such a protocol is based on monogamy of
Bell-CHSH violation by quantum correlations. Though unable to design any such
protocol involving bilocal network, we only give justification in support of our claim
that nonbilocal monogamy can provide security analogously.

Consider a secret key sharing protocol based on a quantum network involving three
parties Alice, Bob and Dick and two independent sources S1 and S2 each of which gen-
erates an entangled state. Alice, Bob and Dick are referred to as trusted parties. Let the
parties perform simultaneous measurements on their respective quantum particles that
they receive from the sources (analogous to Fig. 1). Entangled state being generated by
each of the two sources, correlations obtained after simultaneous measurements of the
parties (Bob performing separable measurements) are nonbilocal in nature [36]. Now,
it may happen that the two sources S1 and S2 are under the control of an eavesdropper
(untrusted party). Such a situation may be interpreted in the form of the sources gener-
ating tripartite quantum state where one bit from each source is under the control of the
eavesdropper (schematic diagram involved herein is analogous to that of our scenario,
Fig. 2, where Charlie may be considered as the eavesdropper). Now, the eavesdropper
also performs measurement on his qubits. Depending on his control over the sources,
the eavesdropper will get access to the key generated in the protocol. If he can get
information about the secret key then the correlations shared between Alice, Dick and
the eavesdropper will be nonbilocal (can be interpreted as correlations in reduced net-
work NC in our scenario). But in such a case, due to monogamous nature of nonbilocal
correlations, the correlations shared between Alice, Bob and Dick (analogous to cor-
relations in reduced network NB) will be bilocal (up to testing of bilocal inequality
(Eq. (3))). Based on this observation, the trusted parties can detect the presence of the
eavesdropper and thereby discard the protocol. On the contrary, if eavesdropper cannot

123



212 Page 14 of 17 K. Mukherjee et al.

gain any information about the key then the correlations shared between Alice, Dick
and Charlie will no longer be nonbilocal and consequently nonbilocal correlations will
be generated between the trusted parties. On getting nonbilocal correlations, they are
assured that secrecy of the protocol is maintained. So monogamy of nonbilocality can
be applied to design a secret bit sharing protocol involving quantum network secured
against attacks of eavesdropper. Below, we give justification in support of our claim.

Now in our network scenario (Fig. 2), monogamy of nonbilocal correlations
involves Bell violation by reduced states ρAB, ρAC, ρBD and ρCD. So, restrictions
over distribution of nonbilocal correlations(due to sufficient criterion of nonbilocality
given by violation of bilocal inequality given by Eq. (3)) in reduced networks NB and
NC involve restrictions over shareability of nonlocal correlations (in sense of Bell-
CHSH violation) among the reduced states. Framing of the secret key sharing protocol,
being based on our network scenario, security of the protocol thus ultimately rests upon
monogamous nature of the standard Bell-CHSH nonlocal correlations. Now, as already
discussed before, there exists secret quantum key sharing protocol where security is
guaranteed by monogamy of Bell-CHSH nonlocality [46]. This gives an indication
about the possibility of designing a protocol, secured against eavesdropper’s attack,
via which secret bit can be generated in bilocal network scenario involving Alice, Bob
(performing separable measurements or Bell-state measurement) and Dick even if any
eavesdropper (Charlie) who is capable of performing any separable measurement or
Bell-state measurement have control over both the independent sources S1 and S2.

7 Discussions

Over years, there has been thorough investigation of monogamous nature of quantum
entanglement and quantum nonlocality in the standard Bell-CHSH scenario. In this
paper, we have considered bilocal quantum network to investigate the same for some
weaker form of quantum nonlocality (nonbilocality). Exploitation of our observa-
tions ensures monogamous nature of nonbilocal quantum correlations (up to existing
detection criterion for nonbilocality (Eq. (4)))). For our purpose, we have considered
P22 and P14 scenarios. Interestingly, restrictions over shareability of distribution of
nonbilocal correlations among reduced networks (NB and NC ) are the same irrespec-
tive of the inputs of the nodal parties (Alice and Dick) remaining fixed or not for
observing violation of bilocal inequality in the reduced networks individually. From
our discussions so far, it can be safely concluded that under the assumption of Bob
and Charlie performing separable measurements or Bell-state measurement (BSM),
if quantum correlations in one reduced network (NB , say) exhibit nonbilocality, then
the correlations from the other one (NC ) cannot violate the bilocal inequality (Eq. (4))
and hence may be bilocal. As we have already discussed, such monogamous nature
of nonbilocal correlations can be utilized to design a secret sharing protocol secure
against eavesdropper’s attack. However, we have not been able to explicitly design any
such protocol. One may find interest to develop one such protocol involving bilocal
network. Also, the assumption that an eavesdropper can perform only separable mea-
surements or Bell-state measurement is a weaker assumption as there may be cases
where an eavesdropper can perform more general measurements. For those cases, one
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may try to design monogamy relation of nonbilocal correlations under the assump-
tion that Bob and Charlie can perform more general measurements. One may try to
explore the utility of bilocal monogamy in quantum dialog protocols [52,53]. How-
ever, in [52,53], continuous variable systems are involved in quantum dialog protocol
but till date the bilocal scenarios involve only discrete quantum systems. So, in order
to utilize restrictions over shareability of nonbilocal correlations in such protocols,
criterion to detect nonbilocal correlations must be established following which one
may explore application (if any) of monogamous nature of nonbilocality in all such
protocols. Also, study investigating inter-relation between monogamy of nonbilocal-
ity and other nonclassical aspects of quantum theory is a potential source of research
activities.
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