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Characterizing quantum correlations in a fixed-input n-local network scenario
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Contrary to the Bell scenario, quantum nonlocality can be exploited even when all the parties do not
have freedom to select inputs randomly. Such manifestation of nonlocality is possible in networks involving
independent sources. One can utilize such a feature of quantum networks for purpose of entanglement detection
of bipartite quantum states. In this context, we characterize correlations simulated in networks involving a finite
number of sources generating quantum states when some parties perform fixed measurement. Beyond bipartite
entanglement, we inquire the same for networks involving sources now generating pure tripartite quantum states.
Interestingly, here also randomness in input selection is not necessary for every party to generate nonlocal
correlation.

DOI: 10.1103/PhysRevA.101.032328

I. INTRODUCTION

Entanglement of multipartite quantum systems [1] plays
a pragmatic role in manifesting deviation of quantum theory
(QT) from the classical world. Bell used this intrinsic feature
of the theory to abandon the possibility of existence of any
local realistic interpretation of QT [2,3] which, however,
respects the no-signaling principle. Bell’s theorem provides
an empirical methodology to detect nonlocal behavior of
quantum correlations (often referred to as Bell nonlocality),
an experimental demonstration of which has already been
provided [4,5].

Speaking of tests demonstrating Bell nonlocality, the most
simple test was proposed by Clauser et al. [6]. Such a test
involves two distant observers (Alice and Bob, say) such that
each of them performs one binary measurement choosing
randomly from a set of two measurements. To be precise,
Alice randomly chooses one input from a set of two inputs
({A0,A1}, say) and similarly Bob randomly chooses input
from another set, say {B0,B1}. Moreover, the choice of inputs
of Alice does not depend on that of Bob and vice versa
(measurement independence). Bipartite correlations gener-
ated after measurements are used in testing correlator-based
inequality, more commonly referred to as CHSH inequality.
Violation of CHSH inequality indicates nonlocal nature of
corresponding correlations. To date, analogous to CHSH in-
equality [6], different correlator-based inequalities (referred
to as Bell inequalities) have been derived. Detecting quan-
tum nonlocality by any of these tests requires randomness
in the choice of inputs of both the observers present in
the corresponding measurement scenario. However, random
selection of inputs by all observers is not a necessity to exploit
nonclassicality of quantum correlations simulated in network
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scenarios [7–12] characterized by source independence (often
referred to as n-local networks).

n-local quantum networks [13–19] basically refer to a
network of n sources, independent of each other, such that
each of these sources generates an m-partite quantum state
(m � 2) shared between m distinct parties. Nonlocality of
correlations generated in such networks was first observed in
a bilocal (n, m = 2) network [13,14] where entanglement was
distributed from two independent sources. Such type of non-
locality is referred to as nonbilocality [13,14]. Nonbilocality,
or more general non-n-locality, differs from the usual sense of
Bell nonlocality (standard nonlocality) where entanglement is
distributed from a common source. Some of the measurement
scenarios involved in n-local networks have been proposed
where some (P14 or P13 measurement scenarios [13]) or all
[8,9] of the observers perform a single measurement (referred
to as “fixed measurement” [9]). All of these studies basically
analyzed some specific instances of quantum non-n-locality
in such measurement scenarios where not all observers [13]
can randomly select inputs, thereby manifesting instances of
“quantum nonlocality without inputs” [9]. Now, observation
of quantum nonlocality in networks can be used for the
purpose of detection of quantum entanglement in the same.
In this context, we first intend to exploit quantum nonlocality
in networks, characterized by source independence and fixed
input criterion (for at least one of the observers). Quantum
networks witnessing non-n-locality can then be used for de-
tection of entanglement resources.

For our purpose, we first characterize quantum correla-
tions, thereby analyzing the non-n-local nature of the correla-
tions as detected via violation of existing non-n-local inequal-
ity [16] when each of the sources generates an arbitrary two-
qubit state. In this context, one may note that such a study of
quantum violation was recently initiated in [7] where only two
entangled sources (n = 2) were considered (bilocal network).

As a direct consequence of our findings in practical ground,
we propose a scheme of detecting entanglement (if any) using

2469-9926/2020/101(3)/032328(10) 032328-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.032328&domain=pdf&date_stamp=2020-03-19
https://doi.org/10.1103/PhysRevA.101.032328


MUKHERJEE, PAUL, AND ROY PHYSICAL REVIEW A 101, 032328 (2020)

networks involving independent sources where not all parties
have access to random choice of inputs. Such a protocol,
relying on n-local correlations generated in “fixed input”
measurement scenario [16], serves the purpose of bipartite
entanglement detection. Fixing measurements of some of the
parties makes implementation of our protocol easier compared
to the simplest standard Bell scenario of measurements. How-
ever, it must be pointed out that more easier implementation
of protocols (compared to the scenario to be considered
presently) may be possible if parties are allowed to randomly
select from some suitable measurement settings which are
more easily implementable. But, we do not consider those
easily implementable measurement setting scenarios with a
motivation to detect entanglement in absence of random input
selections.

Recently, n-local networks involving sources distributing
multipartite entanglement have been designed in [17]. How-
ever, in such a measurement scenario, all the parties had
access to random choice of measurements. To verify quantum
nonlocality even in absence of randomness in input selection
(by some of the parties), we consider a measurement scenario
where now three independent sources generate tripartite quan-
tum states. In this context, we have designed a set of nonlinear
Bell inequalities, a violation of which suffices to detect non-
n-locality. The nonlinear trilocal network scenario is then
used for the purpose of tripartite entanglement detection. Our
protocol (characterized by fixed measurement setting by two
parties) can detect both biseparable and genuine entanglement
(some members of GGHZ and W classes) of pure tripartite
quantum states. Interestingly, it can be used to distinguish
between genuine entanglement and biseparable entanglement
of pure states and can even specify the exact nature of bisep-
arable entanglement. Finally, we conjecture generalization of
our protocol for detecting entanglement of multipartite (m �
4) pure states. Apart from entanglement detection, the study
of analyzing quantumness of network correlations may be
contributory in the study of various information processing
tasks such as distribution of quantum key (QKD) [20–23],
generation of private randomness [24,25], Bayesian game
theoretic applications [26], etc.

The rest of our work is organized as follows. We start
with discussing the motivation behind our work in Sec. II
followed by some basic preliminaries in Sec. III. In Sec. IV
first we analyze the nature of quantum correlations generated
in n-local linear network [16] using n number of bipartite
quantum states followed by proposal of the scheme for bipar-
tite entanglement detection. In Sec. V, first we derive the set
of Bell inequalities for the nonlinear trilocal network scenario,
then study violation of corresponding inequalities by pure tri-
partite quantum states, and then design tripartite entanglement
detection scheme for some pure tripartite states. In Sec. VI,
we generalize the nonlinear trilocal network to a nonlinear
n-local network scenario when each of n independent sources
generates an m-partite (m � 4) state. Finally, we end with
some concluding remarks in Sec. VII.

II. MOTIVATION

Nonlocal behavior (Bell nonlocality) of correlations acts
as a signature of presence of entanglement distributed (by a

FIG. 1. Schematic diagram of bilocal network [13,14]. In the
P14 scenario, y denotes fixed measurement of Bob together with �b
referring to four outputs b0b1 = 00, 01, 10, 11.

common source) among the parties who perform local mea-
surements on their respective particles forming the entangled
state. In a network scenario, specifically for a bilocal network,
Gisin et al. proved that all bipartite entangled states violate
the bilocal inequality (see Sec. III) indicating nonbilocality
of corresponding network correlations [13]. Their findings [7]
generate the idea of using a bilocal network to detect entan-
glement of the states distributed by the sources. This idea ba-
sically motivates this work. We exploit the nonclassical nature
of quantum correlations generated in a network (involving n
independent sources) where all the parties do not have access
to random input selection. Subsequently, we use the observa-
tions for detecting entanglement of bipartite states involved in
the network. We not only confine within the scope of bipartite
entanglement, but consider tripartite entanglement also.

III. PRELIMINARIES

A. Bilocal scenario

A bilocal network (Fig. 1) was framed in [13,14]. It is a
network of three parties, say, Alice (A), Bob (B), and Charlie
(C), and two sources S1 and S2 arranged linearly. Sources S1

and S2 are independent to each other (bilocal assumption).
Each of S1 and S2 sends a physical system characterized
by variables λ1 and λ2, respectively. Intermediate party Bob
gets two particles (one from each source). In P14 scenario
[13,14], each of Alice and Charlie performs any one of two
binary output measurements on their respective subsystems:
x, z ∈ {0, 1} denote respective input sets for Alice and Charlie
whereas their outputs are labeled as a, c ∈ {0, 1}. Bob per-
forms a single (fixed) measurement (y) having four outcomes:

b = −→
b = b0b1 = 00, 01, 10, 11 on the joint state of the two

subsystems received from S1 and S2.
Correlations generated in the network are local if these can

be decomposed as P14(a, b, c|x, y, z) = ∫∫
dλ1dλ2ρ(λ1, λ2)V

with V = P14(a|x, λ1)P14(b|y, λ1, λ2)P14(c|z, λ2). (1)

Tripartite correlations P14(a, b, c|x, y, z) are bilocal if these
can be written in the above form [Eq. (1)] along with the
constraint (referred to as bilocal constraint)

ρ(λ1, λ2) = ρ1(λ1)ρ2(λ2) (2)
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FIG. 2. Schematic diagram of quantum n-local linear network.
E1 and En+1 stand for observables corresponding to binary inputs x1

and xn+1 of P1 and Pn+1, respectively. Here, each of Pi (i = 2, ..., n)
performs asingle measurement denoted by BSM, which stands for
complete Bell basis measurement with �ai referring to four outputs
ai0ai1 = 00, 01, 10, 11.

imposed on the probability distributions of the hidden vari-
ables λ1, λ2. A linear extension of this model involv-
ing n independent sources and n + 1 parties was made
in [16].

Nonbilocality of tripartite correlations is guaranteed if
these violate the inequality

√|I| + √|J| � 1 (for details, see
[13]). Quantum violation of the bilocal inequality was pointed
out in [7]. Based on their findings it can be said that any
bipartite two-qubit entangled state violates the bilocal in-
equality. Linear extension of bilocal network, referred to as
n-local linear network, was given in [16] where the number
of independent sources is n. n-local quantum linear network
is considered for our purpose (see Fig. 2).

B. Complete Bell basis and GHZ basis measurement

Both of these measurements are instances of quantum
entangled (joint) measurements. The operator of complete
Bell basis measurement [7], often referred to as “Bell state
measurement” (BSM), is represented in terms of its four
eigenvectors (Bell states):

|φ±〉 = |00〉 ± |11〉√
2

, (3)

|ψ±〉 = |01〉 ± |10〉√
2

. (4)

Analogous to the bipartite entangled measurement of BSM,
the operator corresponding to tripartite entangled measure-
ment of complete GHZ basis measurement (GSM) is given

in terms of the GHZ basis [15]:

|φmnk〉GHZ= 1√
2

1∑
r=0

(−1)m∗r |r〉|r⊕n〉|r⊕k〉, m, n, k ∈ {0, 1}.

(5)

IV. QUANTUM VIOLATION OF LINEAR
n-LOCAL INEQUALITY

Here, we consider an n-local linear network [16] involving
quantum states (see Fig. 2). Let each of n independent sources
generate a two-qubit state: source Si generating state �i (i =
1, 2, . . . , n). Two qubits of state �i are sent to parties Pi

and Pi+1 (i = 1, 2, . . . , n). The overall joint quantum system
involved in the network is ⊗n

i=1�i. After receiving qubits, each
of the extreme two parties P1 and Pn+1 performs projective
measurements in any of two arbitrary directions locally on
their respective particles: P1 chooses any one of directions �α0

and �α1 (say) whereas for Pn+1 let the directions be along any
one �β0 and �β1. Each of remaining n − 1 intermediate parties
Pi (i = 2, . . . , n − 1) performs a complete Bell-basis mea-
surement (fixed setting) on the joint state of their respective
two particles received from adjoining sources Si and Si+1 (see
Fig. 2). (n + 1)-partite correlations generated in the network
are then used to test the n-local inequality [16]√

|I14| +
√

|J14| � 1. (6)

Terms appearing in the above equation are detailed in Table I.
Clearly, excepting the extreme two parties A1 and An+1,

none of the remaining n − 1 parties have access to random
choice of measurements. Under such circumstances, we con-
sider two separate cases.

Network involving pure states. Let each of the n sources
generate a pure two-qubit state. To be precise, say Si emits

�i = γ0i|00〉 + γ1i|11〉, (7)

where γ0i and γ1i (i = 1, . . . , n) are positive real Schmidt co-
efficients [27] satisfying normalization condition γ 2

oi + γ 2
1i =

1. �i is entangled for any nonzero value of both γ0i and
γi1 (i = 1, 2, . . . , n), i.e., γ0iγ1i > 0. Maximizing over all
possible projective measurement directions of extreme two
parties A1 and An+1, the upper bound of violation (B14, say)
of Eq. (6) turns out to be

B14 = B(pure)
14 = √

1 + 2n
n
i=1γoiγ1i. (8)

B14 > 1 implies that all the pure states involved in the network
are entangled. Hence, up to the existing sufficient criterion

TABLE I. Details of the terms appearing in Eq. (6). E1 and En+1 denote respective observables corresponding to binary inputs x1 and xn+1

of parties P1 and Pn+1. a1, an+1 ∈ {0, 1} stand for corresponding outputs.

Measurement and
I14 and J14 Correlators outputs of Pi (i = 2, . . . , n)

I14 = 1
4

∑
x1,xn+1=0,1〈E1E 0

2 . . . E 0
n En+1〉 〈E1Ey

2 ...Ey
n En+1〉 = ∑

U (−1)a1+a2y+...+any+an+1V14 Ey
i :observable of Pi

U = {a1, a20, a21, ..., an0, an1, an+1} Corresponding to a single input
J14 = 1

4

∑
x1,xn+1=0,1(−1)x1+xn+1〈E1E 1

2 ...E 1
n En+1〉 V14 = P(a1,

−→a2 , ...,−→an , an+1|x1, xn+1) having 4 outputs:
−→ai = ai0ai1 = 00, 01, 10, 11
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given by Eq. (6) for detecting nonbilocality, nonbilocal cor-
relations are generated in a network only if all pure states
involved in the network are entangled.

Network involving mixed bipartite states. Let us now con-
sider the case when each of S j emits a mixed bipartite state
(density matrix formalism)

� j = 1

22

3∑
i1,i2=0

t ( j)
i1i2

σ 1
i1

⊗
σ 2

i2 , (9)

where σ
q
0 stands for the identity operator of the Hilbert

space which is associated with qubit q and σ
q
iq
, denote the

Pauli operators along three mutually perpendicular direc-
tions, iq = 1, 2, 3. t ( j)

i1i2
(i, j = 1, 2, 3) denote the elements of

the correlation tensor T ( j) (say) of the bipartite state � j .
Polar value decomposition of correlation tensor (T ( j)) for
each of � j generates the matrix U ( j)M ( j) = T ( j) where U ( j)

denotes a unitary matrix and M ( j) =
√

(T ( j) )†T ( j) having
eigenvalues λ

( j)
1 � λ

( j)
2 � λ

( j)
3 . The polar decomposition of

�( j) and �( j+1) characterize the fixed measurement (BSM) of
Aj ( j = 2, . . . , n) who performs suitable local unitaries over
subsystems received from sources S j and S j+1 (for detailed
discussion on the methodology used here, see [7]). The upper
bound of violation (B14) now turns out to be

B14 = B(mixed)
14 =

√

n

j=1λ
( j)
1 + 
n

j=1λ
( j)
2 . (10)

Now, let none of � j ( j = 1, . . . , n) violate standard Bell-
CHSH inequality, i.e., by Horodecki criterion [28]

B( j)
CHSH =

√(
λ

( j)
1

)2 + (
λ

( j)
2

)2 � 1, (11)

where B( j)
CHSH denotes the upper bound of violation of Bell-

CHSH inequality by � j . This in turn indicates that for each of
� j ( j = 1, . . . , n), λ

( j)
i (i = 1, 2, 3) < 1. Under such circum-

stances, Eq. (10) gives

B14 < maxk �=l

√
λ

(k)
1 λ

(l )
1 + λ

(k)
2 λ

(l )
2 , k, l = 1, . . . , n

�
√(

λ
(k)
1

)2 + (
λ

(k)
2

)2
√(

λ
(l )
1

)2 + (
λ

(l )
2

)2

= B(k)
CHSHB

(l )
CHSH

� 1. (12)

Hence, B14 > 1 implies that at least one of the states � j

generated by S j is Bell-CHSH nonlocal.

A. Bipartite entanglement detection

Let there be n unknown bipartite quantum states �i gen-
erated by n distinct sources Si (i = 1, . . . , n). All these n
sources being spatially separated, they are independent of
each other. In order to detect whether at least one of �i

is entangled or not, let the sources be arranged linearly
and the states be distributed among n + 1 parties Pi (i =
1, . . . , n + 1) so as to form a n-local network (Fig. 2). Let
each of P1 and Pn+1 perform projective measurements in any
one of two arbitrary directions whereas intermediate n − 1
parties (receiving two particles each) perform complete Bell
basis measurement (BSM). Practical implementation of this

FIG. 3. Trilocal nonlinear network. Source Si is characterized by
hidden variable ηi (i = 1, 2, 3). In case of quantum network Si gener-
ates tripartite quantum state ρi. Ai denotes observables corresponding
to binary inputs xi of Pi (= 1, 2, 3), respectively. Here, each of
P I

1, P I
2 performs single measurement (GHZ basis measurement)

denoted by “GSM” with three-dimensional vector �bi now referring to
eight outputs bi0bi1bi2= 000, 001, 010, 100, 101, 110, 011, 111.

protocol, where only some of the parties (P1,Pn+1) have to
choose randomly from a set of two measurements, is easier
compared to any protocol where none of the parties involved
perform fixed measurement. (n + 1)-partite correlations gen-
erated therein are used to test the n-local inequality [Eq. (6)].
Observation of violation of the inequality guarantees that at
least one of �i is entangled. Utility of the violation of Eq. (6)
is already justified in the previous subsection. Clearly, this
protocol detects entanglement of all the states involved in a
device-dependent manner (as each of the intermediate parties
have to perform BSM thereby making the scheme depending
on inner working of the device) in case all �i (i = 1, . . . , n)
are identical copies of an unknown quantum state.

Having used a n-local linear network for the purpose of
bipartite entanglement detection, we now proceed to do the
same for some families of pure tripartite entangled states. For
that, we first analyze trilocal nonlinear network scenario.

V. TRILOCAL NONLINEAR NETWORK SCENARIO

The scenario is based on a five-party (PE
1 ,PE

2 ,PE
3 ,P I

1,P I
2)

network involving three independent sources S1, S2, and S3

(see Fig. 3). Source Si is characterized by hidden variable
ηi (i = 1, 2, 3). Source independence implies existence of
independent probability distributions

�(η1, η2, η3) = �1(η1)�2(η2)�3(η3), (13)

where
∫

dηi�i(ηi ) = 1 ∀ i. Source Si sends particles to par-
ties P I

1, P I
2, PE

i (i = 1, 2, 3). Parties P I
1 and P I

2 receiv-
ing three particles (one from each source) are referred
to as intermediate parties and the remaining three parties
PE

1 ,PE
2 ,PE

3 , each receiving a single particle, are referred
to as extreme parties. Let x1, x2, x3(∈ {0, 1}) stand for bi-
nary inputs of parties PE

1 , PE
2 , PE

3 , respectively, whereas
a1, a2, a3(∈ {0, 1}) correspond to the respective outputs.
Each of P I

1 and P I
2 has access to single input giving eight
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TABLE II. Detailing of the terms used in Eq. (15). Ai denote the observable for input xi of PE
i (i = 1, 2, 3) whereas B1, B2 denote

observable corresponding to single input of P I
1 and P I

2, respectively.

Correlators

I (18)
m1(n1 ),m2(n2 ),i = 1

8

∑
x1,x2,x3=0,1(−1)i∗(x1+x2+x3 )〈A1,x1 Am1(n1 )

2 Am2(n2 )
3 A4,x2 A5,x3 〉, i, m1, m2, n1, n2 ∈ {0, 1}

〈A1,x1 Bm1(n1 )
1 Bm2(n2 )

2 A2,x2 A3,x3 〉 = ∑
C (−1)hP18(a1, �b1, �b2, a2, a3|x1, x2, x3)

where C = {a1, a2, a3, b10, b11, b12, b20, b21, b22} and h = a1 + a2 + a3 + sm1(n1 )(b10, b11, b12) + sm2(n2 )(b20, b21, b22)

with functions si(x, y, z) being defined as s0(x, y, z) = x + y + z + 1 and s1(x, y, z) = x ∗ y + y ∗ z + x ∗ z

outputs �b1 = (b10, b11, b12) and �b2 = (b20, b21, b22) (bi j ∈
{0, 1} ∀ i = 1, 2 and j ∈ {0, 1, 2}) denote the outputs of par-
ties P I

1 and P I
2, respectively. Parties are not allowed to com-

municate between themselves. Correlations generated in this
network scenario are trilocal if they can be factorized as
follows:

P18 (a1, �b1, �b2, a2, a3|x1, x2, x3)

=
∫∫∫

dη1dη2dη3�(η1, η2, η3)W,

whereW = P18(a1|x1, η1)P18( �b1|η1, η2, η3)P18( �b2|η1, η2, η3)

×P18(a2|x2, η2)P18(a3|x3, η3) (14)

along with the restriction imposed by Eq. (13). Under source
independence restriction [Eq. (13)], correlations which cannot
be decomposed as above [Eq. (23)] are said to be nontrilocal
in nature. It may be noted that the network scenario introduced
here is in some extent similar to that of the scenario discussed
in [17] where each of the parties involved has the freedom
to choose from a set of two measurements. So, the scenario
in the present discussion and that introduced in [17] differ
on the basis of whether the intermediate parties perform a
single measurement or not. Correspondingly, the correlations
characterizing the measurement scenarios and the inequalities
involved therein are different from those discussed in [17].
We now derive a set of sufficient criteria in the form of
nonlinear Bell-type inequalities sufficient to detect nontrilocal
correlations.

Theorem 1. For any trilocal five-partite correlation, each of
the following inequalities necessarily holds:

3

√∣∣I (18)
m1,m2,0

∣∣ + 3

√∣∣I (18)
n1,n2,1

∣∣ � 1 ∀ m1, m2, n1, n2 ∈ {0, 1}. (15)

For details of the correlators used in Eq. (15), see Table II.
Proof. For proof, see Appendix A.
The set of 16 inequalities given by Eq. (15) being only

necessary criteria of trilocality, there may exist nontrilocal
correlations satisfying all of them. However, violation of at
least one of these inequalities guarantees nontrilocality of the
correlations. Violation of Eq. (15) for at least one possible
(m1, m2, n1, n2) is thus sufficient for detecting nontrilocality
of corresponding correlations.

A. Quantum violation

Consider a network involving three independent sources
S1, S2, and S3, each generating a three-qubit state ρ (i) (see
Fig. 3). The overall quantum state involved in the network

becomes

ρ12345 = ρ (1)⊗ρ (2)⊗ρ (3). (16)

After the qubits are distributed from the sources, no com-
munication takes place between the parties who now perform
measurements on their respective subsystems. Each of P I

1 and
P I

2 performs complete GHZ basis measurement (GSM) on
the joint state of the three qubits that each of them receives
from the three sources. Each of PE

1 , PE
2 , and PE

3 performs
projective measurements on their single qubit in any of two
arbitrary directions: P I

i (i = 1, 2, 3) measures in any one of
�γi0 and �γi1 directions.

Interestingly, if each of the sources Si generates arbitrary
tripartite product state

ρi = ⊗3
j=1(v0i j |0〉 + v1i j |1〉)(|v0i j |2 + |v1i j |2 = 1), (17)

none of the inequalities given by Eq. (15) are violated. We
now proceed to discuss some possible cases of quantum
violation of inequalities given by Eq. (15). For our purpose,
we consider tripartite pure states.

Let each of the sources generate an arbitrary biseparable
(in 12/3 cut) entangled state∣∣ϕi

(12/3)

〉 = (c0i|00〉12 + c1i|11〉12) ⊗ (v0i|0〉3 + v1i|1〉3) (18)

with v2
0i + v2

1i = 1 and c2
0i + c2

1i = 1 (vi j, ci j are the Schmidt
coefficients) [27]. Now, compatible with the arrangement of
the sources and parties in this network, let the first qubit of
each ρi = |ϕi

(12|3)〉〈ϕi
(12|3)| (i = 1, 2, 3) is sent to the extreme

parties: PE
1 , PE

2 , and PE
3 receiving the first qubit of ρ1, ρ2, and

ρ3, respectively, whereas the second and third qubits of each
ρi are sent to the intermediate parties: P I

1 receives the second
qubit of ρ1, ρ2, ρ3 and P I

3 receives the third qubit of these
states. Violation of Eq. (15) is observed for some members
of this family [Eq. (18)]. Violation is also observed if each of
Si generates some states having biseparable entanglement in
13/2 cut:∣∣ϕi

(13/2)

〉 = (c0i|00〉13 + c1i|11〉13) ⊗ (v0i|0〉2 + v1i|1〉2). (19)

However, violation is impossible if Si generates any member
from the family of biseparable entangled states having entan-
glement among its second and third qubits:∣∣ϕi

(23/1)

〉 = (c0i|00〉23 + c1i|11〉23) ⊗ (v0i|0〉1 + v1i|1〉1). (20)

At this junction, it should be noted that violation of Eq. (15)
depends on the order of distribution of qubits of each ρi (i =
1, 2, 3) among the parties. Compatible with the network sce-
nario (Fig. 3), when first qubit of each ρi (i = 1, 2, 3) is sent
to the extreme parties and remaining two qubits of each ρi are
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TABLE III. Exploring some specific instances of nontrilocal nature of correlations observed when some tripartite pure quantum states
are used in the nonlinear trilocal network under the assumption that each of PE

1 , PE
2 , and PE

3 receives the first qubit of ρ1, ρ2, and ρ3,
respectively, whereas the remaining two qubits of each ρi are received by the intermediate parties. No violation of trilocal inequalities (at least
one) is, however, obtained when tripartite state has entangled second and third qubits [Eq. (20)] as B18 � 1.

State (ρi generated by Si) State parameters giving violation

|ϕ (i)
GHZ〉 [Eq. (21)] β1 = 0.72, β2 = 0.75, β3 = 0.7

|ϕ (i)
W 〉 [Eq. (22)] ω1i = 0.558327, ω2i = 1.5708, ∀ i ∈ {1, 2, 3}

|ϕi
(12|3)〉 [Eq.(18)] c0i = 0.592368, v0i = 1, ∀ i ∈ {1, 2, 3}

|ϕi
(13|2)〉 [Eq. (19)] c0i = 1.5708 − ı 0.15776, v0i = 1, ∀ i ∈ {1, 2, 3}

|ϕi
(23|1)〉 [Eq.(20)] No violation is obtained. Upper bound (B18, say)

of trilocal inequalities [Eq. (15)]

for identical copies B18 = Max[2
2
3 |c01c11|, (c4

01 + 4c3
01c3

11 + c4
11)

1
3 ]

where ck1 = ck2 = ck3, k = 0, 1

received by the intermediate parties (as discussed), violation
is observed in networks involving biseparable entanglement in
13/2 [Eq. (19)] or 12/3 [Eq. (18)] cuts only. But, violation is
not observed if ρi have biseparable entanglement in 23/1 cut
[Eq. (20)]. But, networks involving biseparable entanglement
in 23/1 [Eq. (20)] cut also gives violation if the second qubit
of each ρi (i = 1, 2, 3) is sent to the extreme parties and the
remaining two qubits of each ρi are received by the interme-
diate parties. However, violation of any one of the trilocal
inequalities given by Eq. (15) is not always arrangement (of
qubits) specific. We consider genuine entanglement in support
of our claim.

Let each of Si in the nonlinear trilocal network now
generate a generalized GHZ (GGHZ) state ([29]) ρi =
|ϕ(i)

GHZ〉〈ϕ(i)
GHZ| where

∣∣ϕ(i)
GHZ

〉 = cos(βi )|000〉 + sin(βi )|111〉, βi ∈
[

0,
π

4

]
. (21)

Contrary to biseparable entanglement, nontrilocal correlations
are obtained in the network (see Table. III) for some states
from the GGHZ family [Eq. (21)] irrespective of distribution
of qubits of each of the states (ρi). Analogous observation is
obtained when W states [30] are involved in the network:

∣∣ϕ(i)
W

〉 = cos ω2i sin ω1i|001〉 + sin ω2i sin ω1i|010〉

+ cos ω1i|100〉, ω1i, ω2i ∈
[

0,
π

4

]
. (22)

Now, if both biseparable and genuine entanglement of the
W state [Eq. (22)] are used in the network, violation again
depends on arrangement of qubits. Here, it should be pointed
out that if one of the three tripartite pure states generated
by the sources is a product state, then violation of trilocal
inequalities cannot be observed even if the remaining two
states are entangled.

Based on the above analysis of quantum violation and the
fact that such violation is sufficient to detect nontrilocal nature
of network correlations, we now design a scheme to detect
both biseparable and genuine entanglement of tripartite pure
states. But, it may be pointed out that this scheme may fail to

detect presence of entanglement in some cases as violation is
not possible for all tripartite pure entangled states.

B. Tripartite pure entanglement detection

Consider a nonlinear trilocal network. The three unknown
pure tripartite states κ1, κ2, and κ3 are generated by S1, S2,
and S3 in the network. Distribution of qubits among the
parties plays a significant role in violation of trilocal in-
equalities. Consequently, for designing a scheme of entangle-
ment detection, we consider all the possible arrangement of
qubits. The protocol breaks up into 27 phases: ti, j,k (i, j, k ∈
{1, 2, 3}). In phase ti, j,k, for every possible value of i, j, k ∈
{1, 2, 3}, ith, jth, kth qubits of κ1, κ2, κ3, respectively, are
sent to extreme parties. Hence, PE

1 , PE
2 , and PE

3 receive
ith, jth, kth qubits of κ1, κ2, κ3, respectively (for more details
see Table VI in Appendix B). The remaining qubits of each
of the unknown states are distributed among the intermediate
parties in any pattern compatible with the nonlinear trilocal
network scenario (Fig. 3). One may note that ordering of the
phases is not essential. After receiving the particles, in each
of these phases, the parties perform measurements on their
respective subsystems. Correlated statistics are then used to
test the trilocal inequalities [Eq. (15)]. If violation of at least
one of the inequalities is observed in at least one phase, then
each of κ1, κ2, and κ3 is a tripartite entangled state whereas
violation in all the phases ensures genuine entanglement of
all the three unknown states. In the protocol, either violation
occurs in no phase or in specific number of phases (see
Table IV).

Interestingly, comparison of the possible nature of bisep-
arable entanglement of κ1, κ2, κ3 from Table VI ensures the
nature of entanglement of each of the unknown states. To be
more precise, at the end of the protocol, one can detect which
of the three unknown states is genuinely entangled and which
one is biseparable. Also, the specific nature of biseparable
entanglement can be detected.

As already discussed, the total count of phases in which
violation may be encountered is not arbitrary (see Ta-
ble IV). Leaving aside the implications in the last two cases
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TABLE IV. Total count of phases for which violation can be
observed in the protocol is enlisted here. Implications are obvious
from observations discussed in Sec. V A. In case of no violation in
any of the phases, the protocol fails to detect entanglement.

Total number
of phases Implication

0 No definite conclusion

8 All are biseparable

12 Any two of the unknown
states are biseparable and
the remaining is genuinely entangled

other than GGHZ [Eq. (21)] or W [Eq. (22)] classes
18 Only one of three unknown

states is biseparable with
the other two being
genuinely entangled but does
not belong to GGHZ or W families

�19 Each κi has genuine
but <27 entanglement but is neither a member

of GGHZ family [Eq. (21)] nor W state [Eq. (22)]

27 Each of κi is genuinely entangled

(corresponding to last two rows of Table IV), let us consider
the remaining cases individually:

(i) Let violation be obtained in 18 phases. Then, definitely
two of three unknown states are genuinely entangled but are
neither a GGHZ nor W state and the remaining one is a
biseparable entangled state. For instance, violation in only
first 18 phases of the protocol (t1, j,k, t2, j,k, j, k ∈ {1, 2, 3})
ensures that only κ1 is a biseparable entangled state having
entanglement in 12/3 cut. This implication is obvious if one
notes that the 12/3 cut biseparable entanglement is the only
possible nature of entanglement of κ1 if violation is obtained
in first 18 phases (Table VI).

(ii) Violation in only 12 phases ensures that two of
three unknown states are biseparable entangled and other
one is genuinely entangled (other than GGHZ or W state).
Consider a specific instance. Let violation be obtained in
t1,2,k, t3,2,k, t1,3,k, t3,3,k, ∀ k ∈ {1, 2, 3}. Then, κ1, κ2 are bisep-
arable entangled states in 13/2 and 23/1 cuts, respectively,
and κ3 is genuinely entangled.

(iii) Violation in only 8 phases ensures that all three
unknown states are biseparable entangled. The nature of
biseparable entanglement of each κi is also detected.
Consider the instance where violation is obtained in

phases t1,2,k, t3,2,k, t1,3,k, t3,3,k, ∀ k ∈ {1, 2}. Then, κ1, κ2, κ3

are biseparable entangled states in 13/2, 23/1, and 12/3 cuts,
respectively.

All these implications are direct consequences of the fact
that violation of trilocal inequalities is not distribution (of
qubits) specific in networks involving only genuine entangle-
ment of GGHZ or W states whereas the same is crucial if at
least one of the sources generates biseparable entanglement
or genuine entanglement other than GGHZ [Eq. (21)] and W
[Eq. (22)] classes.

VI. n-LOCAL NONLINEAR NETWORK SCENARIO

A trilocal nonlinear network can be extended to a network
involving 2n − 1 parties and n independent sources, each gen-
erating an n-partite state. Each of n number of parties PE

i (i =
1, 2, . . . , n) (say) receives only one particle and are referred to
as extreme parties whereas each of remaining n − 1 parties
P I

i (i = 1, 2, . . . , n − 1), referred to as intermediate party,
receives n particles (each from one source). Let xi ∈ {0, 1} and
ai ∈ {0, 1} denote the binary input and output, respectively,
of Ai (i = 1, 2, . . . , n). Each of Bi (i = 1, 2, . . . , n − 1) per-
forms a fixed measurement having 2n outputs labeled as a
n-dimensional vector �bi = (bi0, . . . , bin−1).

After receiving qubits from the sources, parties do not
communicate. (2n − 1)-partite correlations are n-local if they
can be decomposed as

P12n (a1, �b1, . . . , �bn−1, a2, . . . , an|x1, . . . , xn)

=
∫

. . .

∫
dη1 . . . dηn�(η1, . . . , ηn)Wn

where Wn = 
n
i=1P12n (ai|xi, ηi )


n−1
i=1 P12n ( �bi|η1, . . . , ηn) (23)

together with the constraint
�(η1, η2, . . . , ηn) = 
n

i=1�i(ηi ), (24)

where ηi characterizes source Si and
∫

dηi�i(ηi) = 1 ∀ i ∈
{1, . . . , n}. Correlations inexplicable in the above form are
non-n-local. The n-local inequalities are given by the follow-
ing theorem.

Theorem 2. Any n-local (2n − 1)-partite correlation term
necessarily satisfies

n

√∣∣∣I (12n )
f1,..., fn−1,0

∣∣∣ + n

√∣∣∣I (12n )
g1,...,gn−1,1

∣∣∣ � 1 (25)

where f1, . . . , fn−1, g1, . . . , gn−1 ∈ {0, 1}.
Correlators used in Eq. (25) are detailed in Table V.

TABLE V. Detailing of the terms used in Eq. (25).

Correlators related to n-local nonlinear inequalities [Eq. (25)]

I (12n )
f1(g1 ),..., fn−1(gn−1 ),i = 1

2n

∑
x1,...,xn=0,1

(−1)i∗(x1+...+xn )〈A1,x1 B f1(g1 )
1 ...B fn−1(gn−1 )

n−1 ...An,xn 〉, with i, f1, ..., fn−1, g1, ..., gn−1 ∈ {0, 1}

〈A1,x1 B f1(g1 )
1 ...B fn−1(gn−1 )

n−1 ...An,xn 〉 = ∑
Y

(−1)hP12n (a1, �b1, ..., �bn−1, ..., an|x1, ..., xn)

where Y = {a1, ..., an, b10, ..., b1n−1, ..., bn−10, ..., bn−1n−1}
and h = a1 + ... + an + s f1(g1 )(b20, ..., b2n−1) + ... + s fn−1(gn−1 )(bn−10, ..., bn−1n−1)

with functions si−1(k1, ..., kn) being defined as the sum of all possible product terms of k1, ..., kn taking i k j’s at a time (i = 1, ..., n − 1).
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Proof. The proof is based on the same technique as adopted
for proving Theorem 1. As mentioned in Appendix A, for
proving Theorem 1 we need to relate the correlators (used in
present scenario) with that introduced for designing another
trilocal network scenario in [17]. Analogously, Theorem 2
can be proved following the same line of argument (as that in
Theorem 1). For that one should relate correlators (Table V)
introduced for the n-local nonlinear scenario here with that of
n-local network developed in [17]. �

Violation of inequalities [Eq. (25)] for at least one possible
( f1, . . . , fn−1, g1, . . . , gn−1) ensures non n-locality of corre-
sponding correlations.

In the quantum scenario, let each source generate an n-
qubit state. Each of the intermediate parties P I

1, . . . ,P I
n−1

performs complete n-dimensional GHZ basis measurement
on the joint of n qubits ( jth qubit coming from Si) whereas
each of the extreme PE

i (i = 1, . . . , n) performs projective
measurement on its respective qubit. We conjecture that quan-
tum violation of Eq. (25) can be obtained. In support of our
conjecture we provide a numerical observation for n = 4, 5.

Let each of n independent sources Si generate n-
dimensional GHZ state

ϑn = |0, 0, . . . , 0〉 + |1, 1, . . . , 1〉√
2

. (26)

Violation of at least one n-local inequality [Eq. (25)] is
obtained. This ensures generation of non-n-local correlations
are generated in the network for n = 4, 5.

VII. DISCUSSIONS

In the recent past, nonlocality of quantum network corre-
lations under circumstances that some of the parties perform
a fixed measurement has been studied extensively. The topic
of our paper evolves in this direction. We analyze the non-
local feature of quantum correlations in networks involving
uncorrelated sources when some of the parties do not have the
freedom to choose their inputs randomly. Deriving quantum
bounds of preexisting [16] n-local inequalities [Eq. (6)] turned

TABLE VI. Detailed distribution of qubits among the extreme parties in phases of the protocol. ∀ j, k ∈ {1, 2, 3}, Qk
j denotes the kth qubit

of κ j . For each i = 1, 2, 3, (i + 4)th column of the table denotes the possible nature of entanglement of unknown state κi other than genuine
entanglement when violation of at least one trilocal inequality is obtained in the corresponding phase.

Phase PE
1 PE

2 PE
3 κ1 κ2 κ3

t1,1,1 Q(1)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 12/3 or 13/2 cut

t1,1,2 Q(1)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 12/3 or 23/1 cut

t1,1,3 Q(1)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 23/1 or 13/2 cut

t1,2,1 Q(1)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 12/3 or 13/2 cut

t1,2,2 Q(1)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 12/3 or 23/1 cut

t1,2,3 Q(1)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 23/1 or 13/2 cut

t1,3,1 Q(1)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 12/3 or 13/2 cut

t1,3,2 Q(1)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 12/3 or 23/1 cut

t1,3,3 Q(1)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 23/1 or 13/2 cut

t2,1,1 Q(2)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 12/3 or 13/2 cut

t2,1,2 Q(2)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 12/3 or 23/1 cut

t2,1,3 Q(2)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 23/1 or 13/2 cut

t2,2,1 Q(2)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 12/3 or 13/2 cut

t2,2,2 Q(2)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 12/3 or 23/1 cut

t2,2,3 Q(2)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 23/1 or 13/2 cut

t2,3,1 Q(2)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 12/3 or 13/2 cut

t2,3,2 Q(2)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 12/3 or 23/1 cut

t2,3,3 Q(2)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 23/1 or 13/2 cut

t3,1,1 Q(3)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 12/3 or 13/2 cut

t3,1,2 Q(3)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 12/3 or 23/1 cut

t3,1,3 Q(3)
1 Q(1)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 13/2 cut 23/1 or 13/2 cut

t3,2,1 Q(3)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 12/3 or 13/2 cut

t3,2,2 Q(3)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 12/3 or 23/1 cut

t3,2,3 Q(3)
1 Q(2)

2 Q(1)
3 12/3 or 13/2 cut 12/3 or 23/1 cut 23/1 or 13/2 cut

t3,3,1 Q(3)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 12/3 or 13/2 cut

t3,3,2 Q(3)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 12/3 or 23/1 cut

t3,3,3 Q(3)
1 Q(3)

2 Q(1)
3 12/3 or 13/2 cut 23/1 or 13/2 cut 23/1 or 13/2 cut
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out to be useful for designing a protocol capable of detecting
bipartite resource of entanglement distributed in the network.

Analyzing network scenarios involving bipartite entangle-
ment sources, we have then designed networks where sources
now generate tripartite quantum states. In this context, we
have framed a set of trilocal inequalities [Eq. (15)], violation
of which (at least one) is sufficient to guarantee nontrilocality
of corresponding correlations. Discussions in Sec. V ensure
that randomness in choice of inputs for every party involved is
not necessary to generate nonlocal (in sense of nontrilocality)
correlations even when tripartite entanglement resources are
distributed in the network. Based on numerical evidence we
conjecture the same for exploiting non-n-locality (n � 4) also.
Consequently, even when all the observers cannot randomly
select their respective inputs in network scenarios involving
m-partite (m � 4) entanglement (generated by sources), non-
local (non-n-local) correlations can be obtained.

Apart from theoretical perspectives, these trilocal network
scenarios turned out to be useful on practical grounds for de-
tection of tripartite entanglement of pure states. More interest-

ingly, protocols designed here can discriminate between some
genuinely entangled states and biseparable entanglement ex-
isting in any possible grouping of two qubits constituting the
three-qubit state. In this context, it will be interesting to en-
hance the capability of this protocol to discriminate between
arbitrary genuine entanglement and biseparable entanglement
of any tripartite state. n-local nonlinear network scenario
introduced here may be explored further with an objective to
detect entanglement of m-partite (m � 4) states and also to
discriminate between genuine entanglement from any other
form of m-partite entanglement.

APPENDIX A

In [17], another trilocal network scenario was introduced
where each of the five parties, involved in the network,
performs one of two dichotomic measurements, i.e., unlike
the measurement scenario introduced here, none of the parties
has fixed input (for details, see [17]). Correlations generated
in such a network [17] are trilocal if they satisfy

3

√∣∣Iu1,u2,0

∣∣ + 3

√∣∣Iv1,v2,1

∣∣ � 1 ∀ u1, u2, v1, v2 ∈ {0, 1} with (A1)

Iu1(v1 ),u2(v2 ),t = 1

8

∑
x1,x2,x3=0,1

(−1)t∗q
〈
A1,x1B1,y1=u1(v1 )B2,x2=u2(v2 )A2,x2A3,x3

〉
, t ∈ {0, 1}, q = x1 + x2 + x3, (A2)

where〈
A1,x1B1,y1B2,y2A2,x2A3,x3

〉 =
∑

a1,b1,b2,a2,a3

(−1)mP(a1, b1, b2, a2, a3|x1, y1, y2, x2, x3), with m = a1 + b1 + b2 + a2 + a3,

(A3)
where xi ∈ {0, 1} denote the input whereas ai ∈ {0, 1} denote the corresponding output of extreme party PE

i (i = 1, 2, 3).
Similarly, y1, y2 denote input and b1, b2 denote output of intermediate party P I

1,P I
2, respectively. A1,A2,A3,B1,B2 denote

the corresponding observables. We now proceed to prove Theorem 1.
Proof. For simplicity, we use the notations syi(bi0, bi1, bi2) = syi (i = 1, 2). Now comparison of the correlation terms related

to these two scenarios gives

P(a1, b1, b2, a2, a3|x1, y1, y2, x2, x3) = P18
(
a1, sy1 = b1, sy2 = b2, a2, a3|x1, x2, x3

)
=

∑
D

δb1,sy1
δb2,sy2

P18(a1, b10, b11, b12, b20, b21, b22, a2, a3|x1, x2, x3), (A4)

where D = {b10, b11, b12, b20, b21, b22}. By Eq. (A3),〈
A1,x1B1,y1B2,y2A2,x2A3,x3

〉 =
∑

a1,a2,a3

(−1)a1+a2+a3 [P(a1, 0, 0, a2, a3|x1, y1, y2, x2, x3) + P(a1, 1, 1, a2, a3|x1, y1, y2, x2, x3)

−P(a1, 0, 1, a2, a3|x1, y1, y2, x2, x3) − P(a1, 1, 0, a2, a3|x1, y1, y2, x2, x3)]. (A5)

Now, Eq. (A4) implies

P(a1, i, j, a2, a3|x1, y1, y2, x2, x3) =
∑
D

δi,sy1
δ j,sy2

P18(b10, b11, b12, b20, b21, b22, a2, a3|x1, x2, x3), ∀ i, j ∈ {0, 1}.

Using the above relations, in Eq. (A5) and C = {a1, a2, a3, b10, b11, b12, b20, b21, b22} we get〈
A1,x1B1,y1B2,y2A2,x2A3,x3

〉 =
∑
C

(−1)a1+a2+a3
∑

i, j=0,1

(−1)i+ jδi,sy1
δ j,sy2

P18(a1, b10, b11, b12, b20, b21, b22, a2, a3|x1, x2, x3)

=
∑
C

(−1)a1+a2+a3+sy1 +sy2 P18(a1, b10, b11, b12, b20, b21, b22, a2, a3|x1, x2, x3).

Hence, 〈
A1,x1B1,y1B2,y2A2,x2A3,x3

〉 = 〈
A1,x1 By1

1 By2
2 A2,x2 A3,x3

〉
. (A6)
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By Eqs. (A1), (A2), (A3), and(A6), we get the required criteria
given by Eq. (15).

APPENDIX B

As already mentioned in the main text that distribution
of qubits among the extreme parties is crucial in the con-
text of obtaining violation by biseparable entanglement. So,
for designing the protocol for purpose of detecting tripartite
entanglement, all possible arrangements of qubits among the
extreme parties are considered. At this junction, one may
recall that in the nonlinear trilocal network scenario (Fig. 3),
for a fixed source, the pattern of arranging qubits among the
intermediate parties does not contribute in detecting the nature
of biseparable entanglement. So, distribution of qubits only

among the extreme parties PE
1 , PE

2 , and PE
3 is enlisted in

Table VI. The last three columns of Table VI indicate the
possible nature of biseparable entanglement of the unknown
state under the circumstance that violation of at least one
trilocal inequality [Eq. (15)] is obtained in the correspond-
ing phase. For instance, consider the phase t1,2,3. If viola-
tion is obtained in this phase of the protocol, then follow-
ing are the possible natures of the three unknown quantum
states:

(i) κ1 is either genuinely entangled or have biseparable
entanglement content in 12/3 or 13/2 cut.

(ii) κ2 is either genuinely entangled or have biseparable
entanglement content in 12/3 or 23/1 cut.

(iii) κ3 is either genuinely entangled or have biseparable
entanglement content in 23/1 or 13/2 cut.
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