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Abstract

Quantum discord is significant in analyzing quantum

nonclassicality beyond the paradigm of

entanglement. Presently, we have explored the

effectiveness of global unitary operations in

manifesting quantum discord from a general two-

qubit zero discord state. Apart from the emergence of

some obvious concepts such as absolute classical-

quantum and absolute quantum-classical states,

more interestingly, it is observed that set of states

characterized by absoluteness contains only

maximally mixed state. Consequently, this marks the

peak of effectiveness of global unitary operations in

purview of manifesting nonclassicality from arbitrary

two-qubit state when other standard methods fail to

do so. A set of effective global unitaries has been

provided in this context. Our observations have direct

implications in remote state preparation task.

Search Log in

https://link.springer.com/journal/10053
https://link.springer.com/article/10.1140%2Fepjd%2Fs10053-021-00055-1/metrics
https://link.springer.com/
https://link.springer.com/signup-login?previousUrl=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1140%2Fepjd%2Fs10053-021-00055-1


Graphic Abstract

This is a preview of subscription content, access via

your institution.

Access options

Instant access to the full article PDF.

Tax calculation will be finalised during checkout.

34,95 €

Buy article PDF

Rent this article via DeepDyve.

Learn more about Institutional subscriptions

https://wayf.springernature.com/?redirect_uri=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1140%2Fepjd%2Fs10053-021-00055-1
https://www.deepdyve.com/lp/springer-journal/any-two-qubit-state-has-nonzero-quantum-discord-under-global-unitary-kicGWqE3Lj?key=springer
https://www.springernature.com/gp/librarians/licensing/license-options?&abtest=v2


Data Availability Statement

This manuscript has associated data in a data

repository. [Authors’ comment: This manuscript has

associated data in arxiv.org(quant-ph). Arxiv number

is: arXiv:2004.12991(quant-ph).]

References

1. 1.

R. Horodecki, P. Horodecki, M. Horodecki, K.

Horodecki, Rev. Mod. Phys. 81, 865–942

(2009)

2. 2.

S. Sazim, I. Chakrabarty, Eur. Phys. J. D 67, 174

(2013)

3. 3.

M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev.

A 59, 1829 (1999)

4. 4.

S. Adhikari, I. Chakrabarty, P. Agrawal,

Quantum Info. Comp. 12, 0253 (2012)

5. 5.

S. Sazim et al., Quantum. Info. Process. 14, 4651

(2015)

6. 6.

C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69,

2881 (1992)

7. 7.

http://arxiv.org/abs/2004.12991


I. Chakrabarty, P. Agrawal, A.K. Pati, Quantum

Inf. Comput. 12, 0271 (2012)

8. 8.

C.H. Bennett et al., Phys. Rev. Lett. 70, 1895

(1993)

9. 9.

R. Horodecki, M. Horodecki, P. Horodecki,

Phys. Lett. A 222, 21 (1996)

10. 10.

A.K. Ekert, Quantum cryptography based on

Bell’s theorem. Phys. Rev. Lett. 67, 661–665

(1991)

11. 11.

C. Brukner, M. Zukowski, J.-W. Pan, A.

Zeilinger, Bell’s inequalities and quantum

communication complexity. Phys. Rev. Lett. 92,

127901–127905 (2004)

12. 12.

H. Buhrman, R. Cleve, S. Massar, R. de Wolf,

Nonlocality and communication complexity.

Rev. Mod. Phys. 82, 665–698 (2010)

13. 13.

G. Passante, O. Moussa, D.A. Trottier, R.

Laflamme, Experimental detection of

nonclassical correlations in mixed-state

quantum computation. Phys. Rev. A 84,

044302–044306 (2011)

14. 14.



E. Knill, R. Laflamme, Power of one bit of

quantum information. Phys. Rev. Lett. 81,

5672–5675 (1998)

15. 15.

C.A. Ryan, J. Emerson, D. Poulin, C.

Negrevergne, R. Laflamme, Characterization of

complex quantum dynamics with a scalable

NMR information processor. Phys. Rev. Lett.

95, 250502–250507 (2005)

16. 16.

D.A. Meyer, Sophisticated quantum search

without entanglement. Phys. Rev. Lett. 85,

2014–2017 (2000)

17. 17.

B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G.

White, Experimental quantum computing

without entanglement. Phys. Rev. Lett. 101,

200501–200505 (2008)

18. 18.

K. Modi, A. Brodutch, H. Cable, T. Paterek, V.

Vedral, Rev. Mod. Phys. 84, 1655–1707 (2012)

19. 19.

H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88,

017901 (2001)

20. 20.

L. Henderson, V. Vedral, J. Phys. A Math. Gen.

34, 35 (2001)

21. 21.



A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett.

100, 050502 (2008)

22. 22.

Borivoje Dakic, Vlatko Vedral, Caslav Brukner,

Phys. Rev. Lett. 105, 190502 (2010)

23. 23.

A. Datta, Phys. Rev. A 80, 052304 (2009)

24. 24.

M.D. Lang, C.M. Caves, A. Shaji, Int. J.

Quantum Inform. 09, 1553–1586 (2011)

25. 25.

A. Ferraro et al., Phys. Rev. A 81, 052318 (2010)

26. 26.

B. Bylicka, D. Chruscinski, Phys. Rev. A 81,

062102 (2010)

27. 27.

J. Maziero, R.M. Serra, Int. J. Quantum Inf. 10,

1250028 (2012)

28. 28.

D. Girolami, G. Adesso, Phys. Rev. A 83, 052108

(2011)

29. 29.

K. Mukherjee, S. Karmakar, B. Paul, D. Sarkar,

Detecting two qubit both-way positive discord

states. Eur. Phys. J. D 73, 188 (2019)

30. 30.



L. Roa, J.C. Retamal, M. Alid-Vaccarezza,

Dissonance is required for assisted optimal state

discrimination. Phys. Rev. Lett. 107, 080401–

080405 (2011)

31. 31.

D. Cavalcanti et al., Operational interpretations

of quantum discord. Phys. Rev. A 83, 032324–

032329 (2011)

32. 32.

M. Piani, P. Horodecki, R. Horodecki, No-local-

broadcasting theorem for multipartite quantum

correlations. Phys. Rev. Lett. 100, 090502–

090507 (2008)

33. 33.

V. Madhok, A. Datta, Role of quantum discord

in quantum communication. Preprint at

arXiv:1107.0994 (2011)

34. 34.

V. Madhok, A. Datta, Interpreting quantum

discord through quantum state merging. Phys.

Rev. A 83, 032323–032327 (2011)

35. 35.

A. Datta, A. Shaji, C.M. Caves, Quantum discord

and the power of one qubit. Phys. Rev. Lett.

100, 050502–050507 (2008)

36. 36.

D.A. Meyer, Sophisticated quantum search

without entanglement. Phys. Rev. Lett. 85, 2014

(2000)

http://arxiv.org/abs/1107.0994


37. 37.

E. Knill, R. Laflamme, Power of one bit of

quantum information. Phys. Rev. Lett. 81, 5672

(1998)

38. 38.

S.L. Braunstein et al., Separability of very noisy

mixed states and implications for NMR

quantum computing. Phys. Rev. Lett. 83, 1054

(1999)

39. 39.

A. Datta, S.T. Flammia, C.M. Caves,

Entanglement and the power of one qubit. Phys.

Rev. A 72, 042316 (2005)

40. 40.

J.M. Matera, D. Egloff, N. Killoran, M.B. Plenio,

Coherent control of quantum systems as a

resource theory. Quantum Sci. Technol. 1, 1

(2016)

41. 41.

B. Dakic et al., Nat. Phys. 8, 666 (2012)

42. 42.

L.G. Giorgi, Quantum discord and remote state

preparation. Phys. Rev. A 88, 022315 (2013)

43. 43.

O. Gamel, Entangled Bloch spheres: Bloch

matrix and two-qubit state space. Phys. Rev. A

93, 062320 (2016)

44. 44.



K. Zyczkowski, P. Horodecki, A. Sanpera, M.

Lewenstein, Volume of the set of separable

states. Phys. Rev. A 58, 883 (1998)

45. 45.

N. Johnston, Separability from spectrum for

qubit-qudit states. Phys. Rev. A 88, 062330

(2013)

46. 46.

F. Verstraete, K. Audenaert, B. De Moor,

Maximally entangled mixed states of two qubits.

Phys. Rev. A 64, 012316 (2001)

47. 47.

N. Ganguly et al., Bell-CHSH violation under

global unitary operations: necessary and

sufficient conditions. Int. J. Quantum Inf. 16(4),

1850040 (2018)

48. 48.

S.S. Bhattacharya et al., Absolute non-violation

of a three-setting steering inequality by two-

qubit states. Quantum Inf. Process. 17, 3 (2018)

49. 49.

S. Patro, I. Chakrabarty, N. Ganguly, Phys. Rev.

A 96, 062102 (2017)

50. 50.

C.H. Bennett et al., Remote state preparation.

Phys. Rev. Lett. 87, 077902 (2001)

51. 51.



A.K. Pati, Minimum classical bit for remote

preparation and measurement of a qubit. Phys.

Rev. A 63, 014302 (2000)

52. 52.

A. Brodutch, D.R. Terno, Phys. Rev. A 83,

010301 (2011)

53. 53.

V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev.

Lett. 96, 010401 (2006)

54. 54.

S. Sachdev, Quantum Phase Transitions

(Cambridge University Press, Cambridge, 2000)

55. 55.

L. Amico et al., Rev. Mod. Phys. 80, 517 (2008)

56. 56.

C. Bennett, P. Hayden, D. Leung, P. Shor, A.

Winter, Remote preparation of quantum states.

Inf. Theory IEEE Trans. 51, 56 (2005)

Author information

Affiliations

1. Department of Mathematics, Government Girls’

General Degree College, Ekbalpore, Kolkata,

700023, India

Kaushiki Mukherjee



2. Department of Mathematics, Balagarh

Bijoykrishna Mahavidyalaya, Balagarh, Dist. -

Hooghly, 712501, India

Biswajit Paul

3. Department of Mathematics, The Heritage

College, Anandapur, Kolkata, 700107, India

Sumana Karmakar

Contributions

K. Mukherjee developed main idea of the work,

performed the analysis and wrote the paper. S.

Karmakar and B. Paul cross checked the findings and

also assisted K. Mukherjee in writing the paper. All

the authors have read and approved the final

manuscript.

Corresponding author

Correspondence to
Kaushiki Mukherjee.

Appendices

Appendix A

Proof of Theorem.1

Let  Let it be subjected to an arbitrary

general (global) unitary operation  It has already

been discussed before that application of a general

(global) unitary  over any two-qubit state can be

interpreted as that of applying local unitary

∈ CQ.ρAB

U.

U

https://link.springer.com/article/10.1140/epjd/s10053-021-00055-1/email/correspondent/c1/new


operations (on subsystems) followed by nonlocal

unitary operations on the whole system and then

again followed by local unitary operations. Let 

 denote the transformed states in

subsequent stages of transformation :

(23)

Now, applying local unitaries has no effect on

quantum discord of a two-qubit state [18]. So if 

 then  Now, as  is a

classical-quantum state (Eq. 12), all possible forms

(Bloch vector representation [29]) of  are given in

Table 1. Nonlocal unitary operation  is now applied

on  The detailed analysis of applying  on all

possible forms of  (to be discussed below) shows

that for every possible form of  except 

there exists a nonlocal unitary operation (see Table 2

for suitable values of parameters ) such that

resulting state  is not a classical-quantum state.

Now,  if and only if  is not a

classical-quantum state [18]. Hence, every 

except  has nonzero ‘one-way’ discord (

 Lastly, local unitary operation 

 is applied resulting in state  

remaining invariant under local unitaries, and any

possible form of  except  has nonzero ‘one-

way’ discord  excepting the maximally mixed

state ( ), any member  from the set of

classical-quantum states (CQ) gets transformed into a

, ,ρ
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‘one-way’ nonzero discord state  Consequently, 

 

Analysis of the effect of nonlocal unitary operations 

 on state  (Eq. 23): This part of the discussion is

based on the necessary and sufficient condition that 

 vanishes if and only if it can be expressed

as a classical-quantum state (Eq. 12). As indicated in

the main text, every possible form of  as a

classical-quantum state is given in Table 1. Now, for

each of those forms, if possible, let us assume that 

 (Eq. 23) can be expressed as a classical-quantum

state (Eq. 12). To be precise, we assume existence of

unit vector  giving direction of

projector ( ) corresponding to classical part of 

 Now, under this assumption, 

coefficient of  of  (say) should be

equal to that of coefficient of  corresponding

to classical-quantum state form of  (say).

Given a  failing to obtain equality ( )

for at least one (i, k, j, l) indicates that such a

comparison is impossible which in turn proves that

our assumption is wrong:  is not a classical-

quantum state. Consequently,  turns out

to be nonzero.

Now, Table 1 indicates two possible forms of classical

quantum states (Eq. 12).

(24)
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(25)

where  and  are

real vectors. In Eq. (25), the index 

Corresponding possible cases are as follows:

1. 1.

, ,  arbitrary

2. 2.

, ,  arbitrary

3. 3.

, ,  arbitrary

We now start with the first form (Eq. 24). For

arbitrary  depending on  in Eq. (24) following

cases are possible:

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

= ( + ⊗ + ⊗ n.σ + ⊗ )ρ
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AB

1
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m = ( , , )m1 m2 m3 n = ( , , )n1 n2 n3

i ∈ {1, 2, 3}.
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m = (0, 0, )m3

m = (0, , 0)m2

m = ( , 0, 0)m1

m = ( , 0, )m1 m3



7. 7.

8. 8.

Firstly, let us consider the trivial subcase of Case.1

where both  and . This corresponds to the

maximally mixed state: Clearly, after

application of any nonlocal unitary operation, 

remains unchanged. Consequently,  in this case is

a classical-quantum state, thereby having vanishing

discord.

We now approach with all possible nontrivial

subcases related to each of the above cases starting

with that of Case.1.

Case1:  and  is arbitrary. Possible

subcases of Case.1 are:

 with  whereas  and 

 are arbitrary.

Subcase 1: Let nonlocal unitary operation 

 characterized by  

 be applied on  As stated above, let

m = ( , , 0)m1 m2

m = (0, , )m2 m3

m = ( , , )m1 m2 m3

m n = Θ

= .ρ
(1)
AB

1
4

I2×2

ρ
(1)
AB

ρ
(2)
AB

m = Θ vecn

n = ( , 0, 0)n1

n = (0, , 0)n2

n = ( , , 0)n1 n2

n = ( , , )n1 n2 n3 ≠ 0n3 n1

n2

= ( , , )Û Û ϕ1 ϕ2 ϕ3 = ,ϕ1
π
2

= =ϕ2 ϕ3
π
4

.ρ
(1)
AB



us now consider coefficient of term  of 

 and that of coefficient of term 

appearing in assumed classical-quantum state form

of  Equality  demands:

(26)

As  and   

 Again  demands:

(27)

Using  in Eq. (27) demands 

leading to a contradiction. Hence,  and

 do not hold simultaneously.

Consequently, for this subcase,  obtained from

classical-quantum state  after applying nonlocal

unitary operation  is not a classical-

quantum state. So under application of ,

the classical-quantum state  (Eq. 24),

characterized by  and  gets

converted to a ‘one-way’ discord nonzero state.

Subcase 2: Let nonlocal unitary operation 

be applied.  demands:

(28)

Hence,  demands  

 But  demands:

(29)

which requires  as  must be 0 if 

 (Eq. 28). This again leads to a
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π
2

π
4

π
4

ρ
(1)
AB

n = ( , 0, 0)n1 m = Θ,

( , 0, )Û
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contradiction as for this subcase, 

Subcase 3:


Let nonlocal unitary operation  be applied.

 demands:

(30)

Hence,  demands  

 But  demands:

(31)

which requires  as  must be 0 which leads

to a contradiction as for this subcase, 

Subcase 4:  with  whereas 

and  are arbitrary.

Let nonlocal unitary operation  be applied.

 demands:

(32)

For the above relation to be true, if possible let 

 But for   demands 

 which is a contradiction. So 

Consequently, Eq. (32) requires  But

then  demands  which is

impossible and so again contradiction obtained as for

this subcase, 

Case 2:


≠ 0.n2

n = ( , , 0)n1 n2
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π
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π
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Possible subcases are as follows:

Subcase 1:  where  and 

 are arbitrary

Here,  is applied.  demands:

(33)

So,  and  But using these in

relation  gives  which is

impossible.

Subcase 2:  where  and  is

arbitrary. Here,  is applied. 

and  demand:

(34)

As ,  and  But using

these in relation  gives  which

leads to contradiction.

Subcase 3:  where  is arbitrary 

 is applied.  requires:

(35)

So,  and  But using these in

relations  gives

(36)

and in  gives
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(37)

Above two relations require  which is

impossible.

Case3:  Possible subcases are as

follows:

Subcase 1:  where  and 

are arbitrary. Here,  is applied. 

 demands:

(38)

So,  and  But using these in

relation  gives  which is

impossible as 

Subcase 2:  where  and  is

arbitrary.  is applied.

 demands:

(39)

As  above relation implies either  or 

 If possible, let  Then, 

 implies  which is impossible.

Hence,  Consequently,  Now,

using  in  gives 

Now,  implies  Now, this

relation when used in  gives 

which is impossible. Hence, Eq. (39) is impossible.
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Subcase 3:  where  is arbitrary. 

 is applied.  requires:

(40)

So  and  But using these in

relation  gives  which is

impossible.

Case 4:  Possible subcases are as

follows:

Subcase 1:  where  and 

are arbitrary. Here,  is applied. 

 demands:

(41)

As   and  But using

these in relation  gives  which is

impossible as 

Subcase 2:  where  and  is

arbitrary.  is applied.

 demands relation given by Eq. (41). So

 and  But using these in

relation  gives  which is

impossible as 

Subcase 3:  where  is arbitrary. 

 is applied.

 demands relation given by Eq. (41)

and hence  and  But using
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π
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= = 0u2 u1 = ±1.u3
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CQ
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m = ( , 0, 0).m1

n = ( , , )n1 n2 n3 ≠ 0n1 ,n2 n3

(0, , 0)Û
π
2
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CQ
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(1 − ) = 0m1 u2
3

≠ 0,m1 = = 0u2 u1 = ±1.u3
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CQ
1000 = 0n1

≠ 0.n1

n = (0, , )n2 n3 ≠ 0n2 n3

( , , 0)Û
π
4

π
2

=C0100 C
CQ
0100

= = 0u2 u1 = ±1.u3

=C1000 C
CQ
1000 = 0n2

≠ 0.n2

n = (0, 0, )n3 n3

(0, , )Û
π
4

π
4

=C0100 C
CQ
0100

= = 0u2 u1 = ±1.u3



these in relation  gives  which

is impossible.

Case 5:  and  is arbitrary. 

 is applied.

 and  together demand:

(42)

As   and  But using

these in relation  gives  which

is impossible as 

Case 6:  and  is arbitrary. 

 is applied.

 demands relation given by Eq. (41). As

  and  But using these

in relation  gives  and in

relation  gives  This in

turn implies  which is impossible as 

Case 7:  and  is arbitrary. 

 is applied.

 and  together demand

relation given by Eq. (42). As  

and  But using these in relation 

 gives  which is impossible as 

Case 8:  and  is arbitrary.

Clearly, this case can be proved by anyone of above

=C1000 C
CQ
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m = ( , 0, )m1 m3 n

(0, 0, )Û
π
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CQ
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CQ
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3
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π
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(π,π, )Û
π
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= ±1.u3

=C1101 C
CQ
1101 = 0m2
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m = ( , , )m1 m2 m3 n



three cases (5–7).

Now, we consider the possible cases of states given by

Eq. (25).

Case 1.:   and 

arbitrary.  is applied. 

requires:

(43)

So  and  But using these in

relation  gives  which is

impossible.

Case 2.:  , 

arbitrary.  is applied. 

requires relation given by Eq. (40) and hence 

 and  But using these in

relation  gives  which is

impossible.

Case 3.:  , 

arbitrary.  is applied.  and 

 together require relation given by

Eq. (34) and hence  and  But

using these in relation  gives 

which is impossible. So in each of the possible cases

of , it is shown that after applying suitable

nonlocal unitary operation, the transformed state 

 no longer remains a classical-quantum state.

Consequently,  We enlist the

suitable required nonlocal unitary operations for all

possible subcases of individual cases corresponding

m = ( , 0, 0),m1 S = diag( , 0, 0)s11 n

(0, 0, )Û
π
2 =C0111 C

CQ
0111

(1 − ) = 0m1 u2
2

= = 0u3 u1 = ±1.u2

=C0011 C
CQ
0011 = 0s11

m = (0, , 0),m2 S = diag(0, , 0)s22 n

( , , 0)Û
π
2

π
2 =C1011 C

CQ
1011

= = 0u2 u1 = ±1.u3

=C0011 C
CQ
0011 = 0s22

m = (0, 0, ),m3 S = diag(0, 0, )s33 n

(π, ,π)Û
π
2 =C0011 C

CQ
0011

=C0110 C
CQ
0110

= = 0u3 u1 = ±1.u1

=C1111 C
CQ
1111 = 0s33

ρ
(1)
AB

ρ
(2)
AB

(B/A) ≠ 0.D
ρ

(2)
AB



to first possible form of  (Eq. 24) and also for

second possible form given by Eq. (25).

Appendix B

Here, we discuss the effect of nonlocal unitary

operations over all possible forms of quantum-

classical states [29]. As discussed in ‘Appendix A,’

here also we enlist those nonlocal unitaries which are

effective in generating states having nonvanishing 

 starting from quantum-classical states 

 One of the forms of quantum-classical state

(after application of suitable local unitaries) is given

by Eq. (24), while the other is given by:

(44)

With eight possible forms (as listed in ‘Appendix A’)

of quantum-classical states corresponding to

Eq. (24), the possible cases as given by Eq. (44) are:

1. 1.

 ,  arbitrary

2. 2.

 ,  arbitrary

3. 3.

 ,  arbitrary

We now enlist the effective nonlocal unitaries for all

possible cases in Table 3.

Appendix C

ρ
(1)
AB

(A/B)Dρ
′
AB

.ρAB

=ρ
(1)
AB

( + m.σ ⊗
1

4
I2×2 I2

+ ⊗ + ⊗ )(i = 1, 2, 3)I2 niσi siiσi σi

n = ( , 0, 0),n1 S = diag( , 0, 0)s11 m

n = (0, , 0),n2 S = diag(0, , 0)s22 m

n = (0, 0, ),n3 S = diag(0, 0, )s33 m



Discussing effectiveness of global unitary operations

to convert zero discord state to nonzero discord state

in main text, here we discuss the mechanism of this

conversion in detail.

Application of Global Unitary Operations: Given an

arbitrary two-qubit state  with correlation tensor

 singular value decomposition of  may be

obtained by performing suitable local unitary

operations  over  [43]. Let  be a

classical-quantum state. Let  and 

 denote orthonormalized left and

right singular vectors of , respectively.  denoting 

 as  local unitary

matrices  are given by:

(45)

 being a classical-quantum state, after

application of the local unitary operations 

(Eq. 45),  (Eq. 23) corresponds to one of the

possible forms prescribed in Table 1. Then, observing

the exact form of  the suitable nonlocal unitary

operation  to be applied is chosen from

Table 2 (which enlists required nonlocal unitary for

,ρAB

T , T

⊗U
1
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U
1
B ρAB ρAB
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i

, (i = 1, 2, 3)κR
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( , , )Û ϕ1 ϕ2 ϕ3



every possible form of classical-quantum state given

in Table 1).

Table 2 Details of nonlocal unitary
operations to be applied on any
possible classical-quantum state
having forms given by Eqs. (24) and
(25) so that resulting state has
nonzero 

Table 3 List of suitable nonlocal
unitary operations application of
which converts any possible
quantum-classical state (forms given
by Eqs. (24), (44)) to  such that 

Now, to obtain ‘one-way’ zero discord state starting

from an arbitrary quantum-classical state ,

analogous treatment is to be made with now

considering Table 3 instead of for obvious reasons.

An Example: Consider a two-qubit product state:

(46)

where  

 [29]. So  is a

zero discord state. Correlation tensor is given by:

(47)

The suitable local unitary operations are:

(B/A)Dρ
′

AB

ρ
′

AB

(A/B)Dρ
′

AB

ρAB

= ( + .σ) ⊗ ( + .σ)ρprod
1

4
I2 r
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⎠
⎟⎟



where  

and  After application

of these local unitary operations,  is given by:

(48)

where   and

correlation tensor  is a diagonal matrix 

 Clearly,  (Eq. 48)

corresponds to a form in Table 1 and is also a

quantum-classical state [29]. Observing the

particular form in Table 1, on application of nonlocal

unitary operation (as prescribed by

Table 2), resulting state  is no longer a classical-

quantum state ( ). Again treating 

 as a quantum-classical state,  is the

suitable nonlocal unitary operation (Table 3)

application of which gives  So 

turns out to be a nonzero discord state. Lastly,

suitable local unitaries ,  may again be applied

so as to obtain a simplified version of the state.
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Alternatively, given any  one may directly apply

suitable nonlocal unitary operation 

considering  One such instance is

cited in next section.
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